
The Theoretical Application of Computational 
Complexity Theory in Compiler Optimization 

Wuwei Shao* 

Zhejiang Gongshang University, Hangzhou, 310018, China 
*Corresponding Author: ShaoWuwei331@outlook.com 

Abstract: Computational complexity theory, as an important branch of theoretical computer science, 
systematically characterizes the consumption of time and space resources in computational tasks, 
providing a solid foundation for understanding the inherent difficulty of various computational 
problems. Compiler optimization, as a key aspect of improving program design and execution efficiency, 
involves numerous complex algorithm designs and resource scheduling issues. The computational 
complexity characteristics of these tasks directly constrain the feasibility and performance of 
optimization strategies. Based on the classification system of complexity theory, reduction techniques, 
and complexity boundary analysis, this paper explores in-depth the complexity modeling and 
theoretical characterization of key tasks in compiler optimization, such as register allocation and 
instruction scheduling. It discusses scheduling methods for polynomial-time solvable problems, the 
complexity control mechanisms of approximation algorithms and heuristic strategies, as well as the 
structural insights that complexity theory provides for the optimization of compiler backends. The 
research shows that complexity theory not only offers theoretical guidance for the design of compiler 
optimization algorithms but also promotes the deep integration of theory and engineering practice, 
driving theoretical innovation and application expansion for efficient compilation technologies. 

Keywords: Computational Complexity Theory; Compiler Optimization; Complexity Classification; 
Register Allocation; Instruction Scheduling; Approximation Algorithms; Complexity Boundaries 

Introduction 

With the continuous growth in the scale and complexity of software, compiler optimization has 
become increasingly important in improving program execution efficiency and resource utilization. 
However, numerous key optimization problems, such as register allocation and instruction scheduling, 
face significant algorithmic design challenges due to their inherent computational complexity. 
Computational complexity theory provides a systematic theoretical framework for these problems. 
Through the classification of complexity classes and reduction techniques, it reveals the intrinsic 
difficulty and computational resource requirements of optimization tasks, offering scientific guidance 
for algorithm design. In-depth analysis of complexity boundaries and modeling expressions not only 
promotes a better understanding of the solvability and approximability of optimization problems but 
also provides theoretical support for the enhancement of static optimization strategies and 
constraint-solving techniques. This paper focuses on the theoretical application of complexity theory in 
compiler optimization, aiming to explore its guiding significance for optimization algorithm design and 
its potential for improving the performance of practical compilation systems, promoting the deep 
integration of theoretical computer science and compiler technology, and meeting the demands of 
modern high-performance computing. 

1. The Fundamental Structure and Core Propositions of Computational Complexity Theory 

1.1 The Classification System and Model Construction of Computational Complexity 

Computational complexity theory, as an important branch of theoretical computer science, aims to 
systematically characterize the resource consumption characteristics in the process of solving 
computational problems, primarily involving two dimensions: time complexity and space complexity. 
This theory, based on the Turing machine as a formal computational model, has developed a rich 
system of complexity classes. The polynomial time complexity class (P) is widely regarded as the 

mailto:ShaoWuwei331@outlook.com


representative of "efficiently solvable" problems, encompassing decision problems that can be 
computed in polynomial time on a deterministic Turing machine. In contrast, the nondeterministic 
polynomial time class (NP) includes decision problems whose solutions can be verified in polynomial 
time on a nondeterministic Turing machine. The subtlety of this definition lies in the distinction 
between the "verification" process and the "solving" process, revealing the deeper structure of 
computational complexity [1]. 

Moreover, space complexity classes (such as PSPACE) extend the consideration of computational 
resources, encompassing problems solvable within polynomial space limitations, reflecting the 
diversity and complexity of the computational resource dimension. Theoretically, the PSPACE class 
contains both P and NP classes, reflecting the hierarchical progression of resource requirements in 
computational problems. The reduction techniques within the complexity classification system, 
especially polynomial-time reductions and logarithmic space reductions, provide the core tools for 
defining the relationships between different complexity classes, allowing the complexity mappings 
between problems to be revealed through mutual transformations. This system not only supports the 
rigor of theoretical computation but also lays a solid theoretical foundation for the assessment of 
computational difficulty in practical application domains. 

1.2 The Relationships and Hierarchical Structure of Complexity Classes 

The hierarchical structure of complexity classes is the theoretical cornerstone for understanding the 
differences in computational difficulty. The inclusion relationships between these classes reflect the 
fundamental differences in resource consumption for computational tasks. The class P, as the core set of 
low complexity, represents traditionally "efficiently computable" problems, while the NP class extends 
this scope by incorporating verifiability into complexity analysis. The relationship between P and NP 
remains one of the most challenging core problems in computational complexity, and it has yet to be 
fully resolved. Its importance lies in its direct impact on understanding and classifying the solvability 
of a series of key computational tasks. The PSPACE class further broadens the computational 
perspective, encompassing all solvable problems within polynomial space constraints, forming a 
natural hierarchy in complexity theory that reveals the decisive role of spatial resources in 
computational complexity. 

Reduction theory plays a decisive role in this hierarchical system. Polynomial-time reductions not 
only define NP-completeness but also provide standardized tools for analyzing the inclusion and 
equivalence relationships between complexity classes. Through reductions, the difficulty of a problem 
can be proven, allowing the theoretical community to clearly define the intrinsic limits of resource 
consumption for that problem, which then guides the theoretical positioning of algorithm design in 
related fields. The hierarchical relationships of complexity classes help researchers grasp the difficulty 
level of specific optimization tasks from a theoretical perspective in fields like compiler optimization, 
providing scientific foundations for constructing reasonable algorithm frameworks and decision 
strategies. Additionally, this understanding has spurred innovative developments in complexity theory 
within emerging computational scenarios [2]. 

1.3 The Abstraction of Decision Problems and Function Problems in the Compiler Context 

The core tasks in compiler optimization can essentially be abstracted as decision problems and 
function problems. These two problem paradigms provide clear entry points for the theoretical analysis 
of computational complexity. Decision problems typically involve determining whether a certain 
optimization condition is satisfied, such as in register allocation, where the task is to determine whether 
a feasible allocation scheme exists under given resource constraints, or in instruction scheduling, where 
the goal is to check whether specific dependency relationships allow for a certain instruction ordering. 
The theoretical description of these problems makes it easier to map optimization tasks into complexity 
classes, evaluating their solvability and computational resource requirements. 

Function problems further extend this paradigm by focusing on how to generate a specific optimal 
or approximate solution given the input, reflecting the algorithmic design challenges faced by 
real-world compilers in generating high-quality code. 

This abstraction facilitates the deep integration of compiler optimization with complexity theory, 
ensuring that complexity analysis not only remains at the theoretical level but also directly informs the 
algorithm selection and optimization strategies in compiler design. By formalizing compiler tasks into 
typical problems within the complexity framework, researchers can apply a rich array of theoretical 



tools to analyze their solution boundaries, identifying the feasibility and efficiency bottlenecks of 
algorithms. This methodology not only helps clarify the inherent difficulty of optimization problems 
but also lays a solid foundation for future theoretical breakthroughs aimed at more efficient compilation 
technologies, while simultaneously driving the innovative transformation of computational complexity 
theory into practical engineering applications. 

2. The Complexity Modeling and Theoretical Characterization of Compiler Optimization 
Problems 

2.1 Complexity Boundary Analysis of Key Optimization Tasks in Compilation 

Core tasks in compiler optimization, such as register allocation, instruction scheduling, and basic 
block ordering, involve a deep trade-off between program execution efficiency and resource utilization. 
The computational complexity characteristics of these tasks directly influence the design and 
implementation of optimization algorithms. Register allocation problems are typically classified as 
NP-complete problems, with difficulty arising from the need to achieve optimal coverage of variable 
lifetimes under limited register resources. Instruction scheduling, another typical optimization task, 
involves handling dependencies and execution order, and its computational complexity also has 
significant theoretical boundaries, often proven to be NP-hard problems. The clear characterization of 
the complexity boundaries of these tasks reveals the inevitable computational bottlenecks in 
optimization algorithm design, providing starting points for approximation algorithms and heuristic 
strategies under theoretical guidance [3]. 

Research into complexity boundaries goes beyond simply classifying problems as easy or difficult. 
It delves deeper into the polynomial-time solvability and unsolvability conditions of specific problem 
subclasses, laying the foundation for fine-grained algorithmic complexity analysis. For compiler 
optimization tasks, precise analysis of complexity boundaries helps identify the feasible algorithm 
design space and its limitations, while also providing theoretical support for future optimization of 
algorithm complexity and resource scheduling strategies. Such boundary characterization promotes the 
intersection of complexity theory and compiler optimization, advancing the knowledge transfer 
between theory and engineering practice. 

2.2 The Theoretical Guiding Role of Computational Complexity in Static Optimization Strategies 

Static optimization, as a key process in the compilation of program code analysis and 
transformation, exhibits its complexity characteristics through the structured understanding and 
processing of control flow and data flow. Complexity theory provides a rigorous theoretical framework 
for static analysis tasks, particularly in the design of optimization strategies such as control flow graph 
construction, data dependency analysis, and unreachable code elimination. Complexity metrics become 
an important criterion for selecting algorithmic paths. By identifying the complexity class of the 
analysis task, the computational resource requirements of static optimization strategies can be 
scientifically defined, which in turn guides the feasibility evaluation and performance improvement of 
algorithms. 

The static optimization guided by complexity theory focuses not only on theoretical solvability but 
also promotes hierarchical optimization designs targeting complexity bottlenecks. This includes the 
development of polynomial-time algorithms under specific constraints and the decomposition and 
modularization of tasks with higher complexity. This theoretical perspective deepens the understanding 
of resource limitations in static analysis, facilitating the shift in compiler optimization from being 
experience-driven to being guided by theory, thereby improving the systematic and scalable nature of 
static optimization strategies. The introduction of complexity-guided mechanisms has provided 
innovative momentum for enhancing compiler analysis precision and efficiency [4]. 

2.3 Constraint Optimization Models and Complexity Compression Mechanisms in the Compilation 
Process 

Constraint expression and solving in the compilation optimization process are crucial for achieving 
efficient code generation, involving the formalization of optimization problems into models such as 
Constraint Satisfaction Problems (CSP), Boolean Satisfiability Problems (SAT), or Integer Linear 
Programming (ILP). Complexity theory provides key guidance for the construction and simplification 



of these constraint models, particularly showing significant value in constraint compression and 
complexity reduction. By identifying redundant and irreducible structures within constraint sets, 
complexity compression mechanisms effectively reduce the size of the solution space, enhancing the 
computational efficiency of optimization algorithms. 

The theoretical foundation of complexity compression mechanisms relies primarily on reducibility 
theory, graph compression techniques, and parameterized complexity analysis. By analyzing the path 
magnitudes, node degree distributions, and dependency core structures of constraint graph structures, it 
is possible to identify the least impactful weak dependency paths or redundant conditions, allowing for 
the stripping and restructuring of the constraint set. Furthermore, this mechanism demonstrates 
significant advantages in hierarchical modeling strategies: low-complexity subproblems can be solved 
first to reduce the size of the main problem, while high-complexity regions are locally processed 
through boundary compression or parameter reduction, thus lowering the overall complexity level. This 
strategy not only enhances the compiler's optimization capabilities for large-scale programs but also 
strengthens the modularity and maintainability of the algorithm structure, laying a solid foundation for 
constructing optimization-solving systems with theoretical explainability and computational scalability. 

3. Computability-Oriented Optimization Strategies and Complexity-Guided Algorithm Design 

3.1 Theoretical Scheduling Methods for Polynomial-Time Solvable Optimization Tasks 

Although some tasks in compiler optimization fall within the category of NP-hard problems, under 
specific constraints or limited input sizes, they can be transformed into subproblems that are solvable in 
polynomial time. These problems typically exhibit clear structural features, such as linear dependency 
graphs, tree-like data dependencies, or deterministic resource allocation patterns. By utilizing these 
structural features, theoretical scheduling methods leverage dynamic programming, greedy strategies, 
and graph algorithms to achieve efficient scheduling of control flow and data flow during the 
compilation process. Especially in optimization tasks such as loop unrolling, basic block ordering, and 
instruction pipeline construction, the time complexity of the algorithm can be effectively controlled, 
ensuring the collaborative improvement of both compilation efficiency and generated code quality [5]. 

Furthermore, the core value of complexity theory in scheduling algorithm design lies in identifying 
the "solvability window" of a task through fine-grained classification of complexity classes and 
reduction analysis. For example, under the premise that the task scheduling graph is a Directed Acyclic 
Graph (DAG), the scheduling problem can be reduced to a priority scheduling model, enabling the 
construction of a near-optimal solution within polynomial time. Additionally, complexity analysis 
reveals the complexity transition points in specific scheduling scenarios, such as the exponential 
increase in complexity when transitioning from a single-processor environment to a multi-core 
architecture. These theoretical results provide clear guidance for the applicable boundaries of 
scheduling methods. 

The optimization framework based on theoretical scheduling methods not only provides reusable 
algorithm modules for existing compiler architectures but also presets universal scheduling interfaces 
for the compiler design of new programming languages and architectures. This scheduling mechanism, 
centered on complexity classification, strengthens the systematic and scalable nature of algorithm 
design, allowing compiler optimization to evolve away from empirical rule-based constructions toward 
formal modeling and complexity control. This strategy holds significant forward-looking implications 
for building theory-driven next-generation compiler systems. 

3.2 Complexity Control Mechanisms of Approximation Algorithms and Heuristic Methods 

When the computational complexity of an optimization problem has been proven to be 
NP-complete or falls into higher complexity classes, pursuing an exact solution inevitably leads to 
explosive growth in computational resource requirements. In this context, approximation algorithms 
and heuristic methods provide practical and efficient alternative paths. Complexity theory supports the 
design and evaluation of these algorithms by precisely defining approximation ratios, performance 
bounds, and worst-case error margins. For example, problems related to compiler resource allocation, 
such as minimum dominating set and graph coloring, can be solved using approximation algorithms 
that provide high-quality solutions within acceptable error bounds, thus balancing real-time 
performance and computational efficiency during the compilation process. 



The core of the complexity control mechanism lies in the predictability and systematization of 
algorithm performance. By introducing polynomial-time approximation schemes (PTAS), greedy 
approximation structures, and LP relaxation techniques, designers can effectively control the growth of 
complexity without sacrificing the overall structural stability. In compiler design, tasks such as code 
layout optimization and cache-sensitive scheduling can adopt multi-stage heuristic methods combined 
with local search and cost-function-driven approaches, thereby avoiding the uncontrollable complexity 
found in global search strategies. Furthermore, heuristic strategies can also integrate machine learning 
prediction models, dynamically adjusting the search paths based on historical samples or feedback from 
the objective function, further enhancing adaptability and solution quality [6]. 

Compared to traditionally experience-driven heuristic algorithms, approximation and heuristic 
methods based on complexity theory are more systematic and verifiable. This shift not only improves 
the generalizability and transferability of the solutions but also strengthens the mapping between 
optimization strategies and problem structures, laying the algorithmic foundation for subsequent 
automatic compiler optimization strategy generation. By combining complexity compression 
techniques and fuzzy decision mechanisms, optimization systems with progressive adaptive capabilities 
can be built, achieving optimal performance harmonization across different program scales and runtime 
environments. 

3.3 Structural Insights from Complexity Theory for Compiler Backend Optimization 

The compiler backend is a critical phase that transforms intermediate representations into target 
code, involving high-complexity tasks such as instruction selection, instruction scheduling, register 
allocation, and machine code generation. The nature of these tasks typically manifests as constraint 
satisfaction problems, resource allocation problems, and combinatorial optimization problems, with 
their computational complexity significantly higher than that of frontend syntax analysis and semantic 
transformations. Complexity theory, through systematic analysis of problem structures and resource 
boundaries, provides an extensible theoretical toolkit to reveal the inherent irreducible complexity in 
the optimization process, thereby guiding algorithm design toward the direction of "controllable 
complexity." 

From a structural perspective, complexity analysis reveals the coupling mechanisms and 
hierarchical dependencies between backend optimization tasks, such as the interdependent relationship 
between register allocation and instruction scheduling. Based on this theoretical insight, modular 
reconstruction methods can be employed to decompose high-complexity tasks into multiple sub-tasks 
of lower complexity, using an abstraction layer of complexity (such as SSA form) in intermediate 
representations to decouple and optimize. This strategy not only reduces the peak complexity of the 
overall compilation path but also makes backend optimization more adaptable to the development 
trends of heterogeneous computing platforms and parallel architectures. 

Complexity theory has also driven a redefinition of the "compilation optimality" boundary. Beyond 
traditional objective functions such as minimizing execution time, modern backend optimization 
increasingly incorporates multi-dimensional objectives such as power consumption control, cache 
friendliness, and security. Complexity theory, through multi-objective optimization modeling and 
Pareto boundary analysis, provides a framework that offers both theoretical completeness and strategic 
flexibility for compiler construction. In the future, as program scales and hardware architecture 
complexities continue to grow, complexity theory will play a deeper structural guiding role in 
automating optimization parameter selection, algorithm combination searches, and collaborative 
scheduling of compilation tasks. 

Conclusion 

This paper systematically explores the theoretical application of computational complexity theory in 
compiler optimization, clarifying the core role of complexity classification and reduction techniques in 
characterizing the difficulty of key optimization tasks. The paper analyzes scheduling methods for 
polynomial-time solvable tasks and the complexity control mechanisms of approximation and heuristic 
strategies for NP-hard problems. At the same time, complexity theory’s structural insights into the 
compiler backend optimization process have facilitated the modular design and collaborative 
optimization of algorithms. Future research could further deepen the integration of complexity theory 
with cutting-edge technologies such as machine learning and automated reasoning, exploring adaptive 
compiler optimization frameworks for large-scale heterogeneous computing environments. Additionally, 



the application prospects of complexity theory in dynamic optimization and real-time compilation are 
vast, with the potential to drive compiler technology toward higher levels of intelligence and efficiency, 
contributing to the development of next-generation high-performance software systems. 

References 

[1] Fang, Jianbin, et al. "Systematic Ability-Oriented Parallel Compiler Optimization Course Teaching 
Reform." Computer Education 05 (2025): 96-99. 
[2] Xiong, Kang, et al. "Airborne Deep Computation Compiler Optimization for UAV Collaborative 
Positioning." Computer Science and Exploration 19.01 (2025): 141-157. 
[3] Zhang, Yanshuo, et al. "Case-Based Design of Computational Complexity Theory Courses Based 
on Comparative Analysis." Journal of Beijing University of Electronic Science and Technology 32.02 
(2024): 87-98. 
[4] Pei, Xue, et al. "Compilation Optimization and Implementation of High-Order Cryptographic 
Operators on FPGA." Computer Science 51.S2 (2024): 785-795. 
[5] Zhang, Hongbin, et al. "AutoConfig: An Automatic Configuration Mechanism for Deep Learning 
Compilation Optimization." Journal of Software 35.06 (2024): 2668-2686. 
[6] Gao, Xiangyu. "Research on Several Basic Issues of Big Data Computational Complexity Theory." 
2024. Harbin Institute of Technology, PhD dissertation. 
 


