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Abstract: Geophysical phenomena exhibit highly nonlinear, multiscale, and multiphysics coupling 
characteristics, and their modeling and analysis heavily rely on the rigorous structure of mathematical 
methods and the adaptability of computational strategies. With the growth of observational data and 
the increasing complexity of modeling requirements, geophysical models are transitioning from 
analytical expressions to high-dimensional numerical simulations integrated with intelligent algorithms. 
Focusing on the critical role of mathematics in geophysical modeling, this study systematically 
explores the mathematical structural characteristics of geophysical systems, the modeling mechanisms 
of typical phenomena, and the applicable pathways of tools such as multiscale analysis, high-order 
computation, and machine learning in data processing. The results show that mathematics is not only 
the core language for characterizing the behavior of Earth systems but also an important bridge 
connecting physical processes, observational data, and predictive mechanisms, providing solid support 
for the modeling and understanding of complex natural systems. 
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Introduction 

Geophysical phenomena broadly encompass various natural processes, including atmospheric 
circulation, seismic wave propagation, and geomagnetic field inversion, which essentially exhibit 
highly nonlinear, dynamically coupled, and multiscale interactive system behaviors. In fields such as 
global change, resource exploration, and disaster monitoring, the capability to model and predict these 
processes has become a critical technological bottleneck. Mathematics, as a fundamental tool for 
constructing theoretical models, achieving numerical representation, and guiding inversion analysis, 
plays an irreplaceable role in geophysical research. Particularly under complex boundary conditions, 
uncertain inputs, and massive observational data, traditional physical models alone can no longer meet 
the dual requirements of modeling accuracy and computational efficiency. It is therefore necessary to 
reconstruct the mathematical modeling system by integrating high-order numerical algorithms, 
data-driven strategies, and physical prior constraints, thereby promoting a paradigm shift in modeling 
logic from “analytical–numerical” to a bidirectional integration of “physics–data.” Based on typical 
geophysical phenomena, this study establishes a research framework from theoretical abstraction to 
tool adaptation, aiming to reveal the intrinsic coupling relationship between mathematical language and 
the Earth system, and to provide theoretical support and methodological insights for subsequent model 
optimization and algorithmic innovation. 

1. Theoretical Basis of Mathematical Modeling in Understanding Geophysical Phenomena 

1.1 Mathematical Structural Characteristics of Geophysical Systems 

Geophysical systems exhibit significant nonlinear, multiscale, and strongly coupled characteristics, 
with their operating mechanisms involving the interactions of multiple physical fields, such as gravity, 
magnetic, stress, and temperature fields. The dynamic evolution of these field variables in space and 
time constitutes the fundamental processes of material transport and energy diffusion in continuous 
media. Mathematically, such complex coupled systems are generally described by systems of partial 
differential equations, whose core structures are characterized by nested combinations of nonlinear 
convection–diffusion terms, anisotropic tensor coefficients, and boundary control terms. Taking 
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atmospheric circulation and mantle convection as examples, their evolution equation systems possess 
strong nonlinearity, mixed boundary conditions, and ill-posedness, which significantly increase the 
complexity of model analysis and numerical processing [1]. 

In addition, geophysical phenomena generally involve cross-scale behaviors ranging from 
microscopic scales (e.g., pore fluid flow, seismic fracture propagation) to macroscopic scales (e.g., 
plate motion, climate system regulation). Such multilevel coupling imposes high requirements on 
system integration and variable coordination in mathematical modeling. In model structures, the 
boundary interactions and energy conversion relationships among multiple physical fields need to be 
expressed mathematically through appropriate coupling mechanisms, such as conformal mapping, 
variational principles, or generalized constitutive relations, to maintain both physical consistency and 
mathematical controllability in modeling. Therefore, geophysical modeling is not merely a quantitative 
description of natural phenomena but rather a product of the synergistic interaction among 
mathematical structure design, physical principle embedding, and system behavior prediction. 

1.2 Evolutionary Logic of Mathematical Modeling Paradigms in Geophysics 

The evolution of geophysical modeling paradigms reflects a staged transition from traditional 
analytical models to high-precision numerical models and further to intelligent data-driven models. 
This process embodies not only the updating of mathematical tools but also a paradigm shift in 
modeling logic from “theory-dominated” to “theory–computation–data integration.” In early 
geophysical modeling, researchers primarily relied on simplified equation forms and analytical 
solutions under specific boundary conditions, such as the application of Laplace and Poisson equations 
in gravity and static magnetic field modeling. However, when confronted with practical problems 
involving complex geological structures and dynamic boundaries, the limitations of analytical methods 
gradually became apparent. This led to the emergence of high-order numerical discretization techniques, 
including finite difference, finite element, and spectral methods, to solve geophysical models involving 
irregular grids, heterogeneous media, and dynamic boundaries. 

At present, with the exponential growth of geophysical observation data and the development of 
machine learning algorithms, geophysical modeling is progressively entering a new stage driven by 
“model–data coupling.” In this stage, mathematical modeling not only addresses system dynamic 
equations and boundary value problems but also integrates intelligent algorithm modules, such as data 
assimilation, feature extraction, pattern recognition, and probabilistic inference, to achieve adaptive 
parameter correction and dynamic optimization of predictive capabilities. The evolution of this 
modeling logic requires mathematical models to possess greater robustness and scalability, supporting 
responses to uncertainty, incompleteness, and non-stationarity in their representational forms. For 
example, in seismic inversion problems, traditional regularization methods have gradually been 
integrated with data-driven techniques such as sparse representation and low-rank approximation, 
forming multilayered model frameworks that combine physical constraints with data adaptability. 

1.3 Synergistic Mechanism between Mathematical Rationality and Physical Reasonability in the 
Modeling Process 

The effective construction of geophysical models must achieve deep integration between 
mathematical structures and physical laws, namely, expressing the essential logic of physical 
reasonability through the formalism of mathematical rationality. Mathematical rationality is reflected in 
the formal consistency of the model, the controllability of its solution space, and the guarantee of 
convergence, whereas physical reasonability requires the model to comply with fundamental principles 
such as energy conservation, momentum transfer, and mass balance. The key to the synergistic 
mechanism lies in accurately transforming boundary conditions, initial states, and dynamic evolution 
pathways of physical processes into mathematical language while ensuring consistency in terms of 
continuity, stability, and solvability. For example, in heat conduction problems, a mathematical model 
must not only capture the spatial distribution of temperature gradients but also represent thermal 
response characteristics through the functional expression of the material’s thermal conductivity. In 
seismic wave propagation, the construction of wave equations must fully account for the anisotropy 
and heterogeneity of subsurface media while maintaining energy closure under boundary reflection 
conditions. 

The construction of this synergistic mechanism also involves the fusion processing of multisource 
heterogeneous data and the closed-loop optimization of modeling feedback pathways. In practical 



applications, physical laws are often embedded in model structures in the form of parameters, and the 
acquisition of these parameters relies on observational data and numerical inversion processes. At this 
point, mathematical optimization methods must establish a bridge between data constraints and 
physical mechanisms, such as by employing Bayesian inversion, Kalman filtering, and Tikhonov 
regularization to achieve iterative parameter updates and uncertainty control. Moreover, when dealing 
with complex model structures, the tension between physical interpretability and mathematical 
parsimony must also be balanced to avoid system divergence or parameter unidentifiability caused by 
excessive model degrees of freedom. Therefore, the essence of geophysical mathematical modeling is 
not merely a stacking of technical means but rather an integrated construction process that fuses 
physical ontology with mathematical formal logic, with its effectiveness rooted in the bidirectional 
reconciliation of rational expression and natural laws [2]. 

2. Mechanisms for Constructing Mathematical Models of Typical Geophysical Phenomena 

2.1 Partial Differential Equation Modeling in Atmospheric and Oceanic Circulation 

Atmospheric and oceanic circulation systems, as typical geophysical multiphase flow systems, are 
essentially governed by systems of partial differential equations derived from fundamental principles 
such as mass conservation, momentum conservation, and energy conservation. The core of such models 
lies in the coupled representation of the Navier–Stokes equations, continuity equations, and heat 
transfer equations, which describe the evolution of velocity, pressure, temperature, and density fields of 
fluids to capture the physical essence of large-scale flows. Particularly at the global scale, the Coriolis 
force, gravitational potential, and turbulent viscosity become indispensable terms in the models, 
forming a highly nonlinear and tightly coupled mathematical system. Considering Earth’s curvature, 
rotation, and stratified structure, it is also necessary to introduce multiscale terms in spherical 
coordinate systems and free-surface perturbation conditions to ensure that the models more closely 
reflect realistic circulation characteristics. 

To address the complex boundaries and nonstationary disturbances in atmospheric and oceanic 
systems, high-precision spatial discretization and time integration methods are required. Finite 
difference and finite volume methods exhibit good performance in terms of conservation and grid 
adaptability, while spectral methods demonstrate high efficiency in simulating large-scale flows. 
Parameterization techniques are often introduced in model construction to handle subgrid-scale 
processes, such as statistical approximations of turbulence, convection, and radiative transfer. Such 
models rely on mathematical analysis to identify instability mechanisms and impose strict error control 
requirements on initial-value sensitivity and chaotic behavior, having evolved into partial differential 
equation–based computational platforms with predictive, analytical, and regulatory capabilities. 

2.2 Mathematical Representation Framework of Seismic Wave Propagation Models 

The propagation of seismic waves is a dynamic process in which elastic disturbances travel in wave 
form through subsurface media, and its mathematical modeling is fundamentally based on elastic wave 
equations. These equations originate from the generalized forms of Newton’s second law and Hooke’s 
law in continuous media, typically expressed either as velocity–stress coupled systems or 
displacement-based wave equations. In isotropic media, the propagation of P-waves and S-waves can 
be described by scalar and vector wave equations, respectively, whereas in anisotropic and layered 
media, tensorial stiffness matrices must be introduced to characterize directional dependencies. 
Parameters in the wave equations, such as density and elastic moduli, determine the propagation 
characteristics of the medium and its interface reflection behavior, and their heterogeneity directly 
affects the propagation paths and energy distribution of the wavefield [3]. 

At the mathematical modeling level, seismic wave propagation is characterized by the coupling of 
initial–boundary value problems and high-frequency source terms, and the models face challenges such 
as singular disturbances, non-smooth boundaries, and strong nonlinear material responses. To capture 
fine-scale structures and interface effects during wave propagation, numerical solutions require 
high-order spatial discretization techniques and adaptive mesh refinement strategies, such as 
staggered-grid finite difference methods, high-order finite element methods, and spectral element 
methods, to achieve high-fidelity simulation of wavefield morphology and amplitude evolution. 
Meanwhile, to represent interface scattering, dispersion effects, and dissipation characteristics under 
realistic geological conditions, fractional derivative terms, viscoelastic constitutive relations, or viscous 



damping terms can be introduced, thereby extending the model’s capability to characterize complex 
dynamic behaviors. Wave propagation modeling not only provides theoretical support for source 
mechanism analysis, fault structure characterization, and medium parameter inversion but also 
establishes a mathematical foundation for vibration response prediction and engineering seismic 
simulations. 

2.3 Mathematical Inverse Problem Construction for Gravity and Magnetic Field Inversion 

The inversion of Earth’s gravity and magnetic fields essentially falls within the category of typical 
inverse problem modeling, namely, inferring subsurface physical parameters or source-body structures 
from spatial observation data. Unlike forward problems, inverse problems are generally ill-posed, 
characterized by non-uniqueness, instability, and incomplete data. Mathematically, such problems are 
often expressed in the form of Fredholm integral equations or convolutions, where source-body 
parameters are related to observational data through integral transformations involving Green’s 
functions. The key to constructing inverse problem models lies in establishing reasonable prior 
constraints and regularization mechanisms to enhance model stability and physical interpretability. 

Inverse problem modeling is typically based on least-squares objective functions, combined with 
constraints such as Tikhonov regularization, L1 norms, or total variation to construct solvable 
optimization models. For large-scale or nonlinear problems, efficient parameter inversion can be 
achieved using methods such as the conjugate gradient method, quasi-Newton method, or variational 
Bayesian approaches. Gravity and magnetic field inversion are widely applied to density structure 
identification and structural anomaly detection. To improve resolution, strategies such as multiscale 
regularization, model compression, and deep learning-assisted reconstruction can be introduced, 
integrating traditional modeling with modern data-driven methods to build robust, high-precision 
inversion systems, thereby strengthening the mapping capability between the Earth’s field and 
subsurface structures [4]. 

3. Mathematical Tools in Geophysical Data Analysis: Adaptability and Optimization Strategies 

3.1 Application of Multiscale Analysis Methods in Nonstationary Data Processing 

Geophysical observation data generally exhibit complex characteristics such as nonstationarity, 
nonlinearity, and coexistence of multiple frequencies, and traditional Fourier analysis has significant 
limitations in capturing transient variations and local disturbances. Multiscale analysis methods, by 
constructing time–frequency localized representations, effectively adapt to the dynamic structural 
variations of nonstationary geophysical signals. Among these methods, wavelet transform, with its 
multiresolution characteristics, plays an important role in signal decomposition, mutation detection, and 
boundary identification. It is particularly suitable for layered analysis and local feature extraction of 
seismic signals, geoelectric resistivity profiles, and geomagnetic disturbance data. The customizability 
of wavelet basis functions allows for the preservation of essential structural information in different 
frequency bands while suppressing noise interference, thereby enhancing the representational capacity 
and physical interpretability of model input data. 

Adaptive methods such as the Hilbert–Huang transform (HHT) and empirical mode decomposition 
(EMD) provide more flexible analysis channels for strongly nonlinear and nonstationary data. These 
methods do not require predefined basis functions but instead extract intrinsic mode functions (IMFs) 
in a data-driven manner, enabling dynamic tracking of local frequency characteristics. They have been 
widely applied in source identification, crustal response analysis, and extreme event monitoring. To 
overcome the limitations of EMD in mode mixing and endpoint effects, improved algorithms such as 
ensemble empirical mode decomposition (EEMD) and complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) can be introduced to enhance decomposition stability 
and improve the interpretability of components. Multiscale analysis methods represent a modeling shift 
from static frequency-domain analysis to dynamic structural-domain analysis in geophysical data 
processing, serving as a critical bridge between mathematical tools and the physical mechanisms 
underlying observational information. 



3.2 High-Order Computational Methods and Accuracy Control Mechanisms in Numerical 
Simulation 

Partial differential equations in geophysical models typically involve strong nonlinearity, anisotropy, 
and multiscale coupling terms, and standard low-order numerical methods face bottlenecks in 
balancing solution accuracy and computational efficiency. High-order computational methods, by 
introducing higher-order interpolation, derivative approximation, and mesh reconstruction strategies, 
significantly enhance local accuracy and global convergence while maintaining computational stability. 
Spectral methods, as a representative high-order numerical technique, approximate the solution space 
with global function expansions and are particularly suitable for wave problems in periodic boundaries 
and smooth domains, such as atmospheric circulation, seismic wave propagation, and electromagnetic 
field modeling. Their exponential convergence characteristics provide a considerable accuracy 
advantage in high-resolution simulations [5]. 

To ensure the applicability of numerical solutions under conditions such as boundary treatment, 
medium discontinuity, and geometric complexity, high-order finite element methods, weighted 
essentially non-oscillatory (WENO) schemes, and spectral element methods (SEM) have become 
mainstream approaches. These methods achieve local enhancement in target regions through adaptive 
mesh refinement, unstructured mesh generation, and error estimation mechanisms, thereby improving 
the resolution of complex local structures such as fault zones, abrupt topographies, and heterogeneous 
medium interfaces. In practical simulations, accuracy control mechanisms ensure the reliability of 
numerical results by monitoring residuals, evaluating error propagation, and adjusting time steps, while 
adaptive evolution strategies dynamically allocate computational resources to improve overall 
simulation efficiency. High-order computational methods constitute the core mathematical foundation 
of modern geophysical numerical simulation platforms, and their accuracy control capability is directly 
related to the reliability of simulation predictions and the completeness of structural reconstruction. 

3.3 Integration Pathways between Machine Learning Methods and Traditional Mathematical 
Models 

When addressing modeling requirements involving high-dimensional observational data, nonlinear 
responses, and complex coupled structures, the expressive capability of traditional mathematical 
models becomes increasingly limited. Machine learning methods, with their self-learning, adaptive, and 
nonparametric modeling capabilities, provide new pathways for geophysical modeling and analysis. 
Supervised-learning-based inversion neural networks can learn nonlinear functional relationships 
between seismic records and subsurface structural parameters, demonstrating high efficiency in fault 
identification and source mechanism inference. Unsupervised learning methods, such as clustering 
analysis and autoencoder networks, can identify intrinsic patterns in multisource geophysical data, 
revealing regional structural evolution and spatial anomaly distribution. Deep learning methods, in 
particular, have significant application value in three-dimensional geophysical image recognition, 
subsurface structure reconstruction, and wavefield prediction, forming an efficient mapping chain from 
raw data to structural models [6]. 

The core of the integration pathway lies in ensuring physical consistency and mathematical stability 
by embedding machine learning within the physical modeling framework to construct hybrid models 
that combine data-driven and mechanism-constrained components. Introducing physical loss functions 
and boundary conditions during model training helps enhance the interpretability and physical 
plausibility of the results. Machine learning can also serve as a tool for initial-value or boundary-value 
correction in numerical models, improving simulation stability and convergence. Generative models, 
such as generative adversarial networks (GANs) and variational autoencoders (VAEs), can be used in 
inverse problems for data completion and sample augmentation, thereby improving inversion accuracy 
and generalization capability, and providing new methodological support for geophysical modeling. 

Conclusion 

This study systematically reviews the core role of mathematics in the modeling and analysis of 
geophysical phenomena, outlining the theoretical foundation for constructing mathematical structures, 
the modeling mechanisms of typical phenomena, and the adaptability of modern tools in data 
processing. The findings indicate that geophysical system modeling requires not only the accurate 
characterization of physical mechanisms but also relies on the expressive capability and computational 



efficiency of mathematical models under multiscale, coupled, and uncertain conditions. In scenarios 
such as atmospheric dynamics, seismic wave propagation, and gravity–magnetic inversion, partial 
differential equations, integral inverse problems, and numerical optimization methods provide solid 
support for phenomenon modeling. Facing the nonstationarity and complexity of observational data, 
multiscale analysis and high-order simulation methods enhance the analytical capability of models, 
while the introduction of machine learning techniques extends the expressive boundaries of models in 
structural identification, parameter inversion, and predictive estimation. Future research may further 
focus on optimizing the interpretability of mathematical models, deeply coupling intelligent algorithms 
with physical mechanisms, and ensuring modeling stability under high-dimensional big data conditions, 
thereby promoting the evolution of geophysical modeling toward intelligence, adaptability, and 
integration. 
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