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Abstract: This study focuses on an unbalanced rotor system supported by rolling bearings. The
variable-step Runge–Kutta method is employed to perform numerical integration and obtain the
system's dynamic responses. Bifurcation diagrams under different operating conditions are used to
analyze the evolution of system behavior as parameters vary. The results indicate that at lower
rotational speeds, the system exhibits quasi-periodic motion with small vibration amplitudes, posing
minimal impact on operational stability. As the rotational speed increases, the motion becomes more
complex, presenting various response forms such as periodic motion, quasi-periodic motion, and chaos,
accompanied by larger vibration amplitudes and unstable system operation. These findings can serve
as guidance for system operation under different rotational speeds and provide theoretical support for
the stable performance of rolling bearing–rotor systems.
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1. Introduction

In February 2025, China and Mongolia signed an agreement on the construction of a cross-border
railway. Once operational, this railway will hold strategic significance for enhancing the connectivity
capacity of the China–Mongolia–Russia Economic Corridor. The safety and operational stability of
high-speed trains are directly linked to the efficiency of railway transportation, passenger safety, and
the sustainability of international cooperation. As a core component of the power transmission system
in high-speed trains, the rolling bearing–rotor system plays a decisive role in maintaining operational
stability due to its nonlinear dynamic characteristics and vibration behavior. The study of its dynamic
properties has attracted substantial attention, and significant progress has been made in recent years.

Chen Guo[1] developed a dynamic model of a rotor–rolling bearing system with coupled faults
involving imbalance, rubbing, and base looseness, revealing the effects of rotational speed and bearing
clearance on the system’s bifurcation and chaotic behavior. Chen Zhe-ming[2] investigated the influence
of traction motor rotor vibrations on vehicle dynamics. Liu Guo-yun[3] focused on the early fault
detection of axle box bearings in high-speed trains. Luo Ren[4], based on the dynamics of multibody
systems, established a coupled lateral–vertical–longitudinal dynamic model for trailers and motor cars.
Zhao Huai-yun[5] analyzed the impact of harmonic torque in asynchronous traction motors on
locomotive dynamics. Xu Hu[6] examined the causes behind the increasing failures of wheels and
bearings in 25K-type passenger cars. Chen Guo[7] proposed an improved Empirical Wavelet Transform
(EWT) method for the intelligent diagnosis of surface damage in rolling bearings. Zhang Ao[8]
introduced methods for Doppler distortion correction, multisource sound separation, strong noise
filtering, and feature extraction of wayside acoustic signals for train bearing faults.

These studies have established dynamic models of bearing–rotor systems with various degrees of
freedom, focusing primarily on the system’s bifurcation behavior and the transition from periodic
motion to chaos. However, they fall short of comprehensively revealing the global dynamic behavior of
the system. In particular, the coexistence of periodic solutions and their bifurcation evolution processes
have been rarely addressed. Therefore, this paper adopts the nonlinear dynamic model of a rotor system
with mass eccentricity proposed in[1] to analyze the motion states of the rolling bearing–rotor system
under varying rotational speeds. Based on bifurcation diagrams, this study explores the coexistence
bifurcation modes of periodic motion, and further examines the evolution patterns under different
operating conditions using phase diagrams and Poincaré maps.
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2. Dynamics of the Rolling Bearing–Rotor System

2.1 Rolling Bearing Model

2.1.1 Kinematic Analysis of the Rolling Bearing

The rolling bearing selected in this study is the JIS6306 bearing, with its parameters listed in Table
1.

Table 1 Calculation Parameters of JIS6306 Rolling Bearing

Outer ring radius

Ro（mm）

Inner ring radius

Ri（mm）

Ball radius

rb（mm）

Number of balls

Nb

Bearing clearance

γ（µm）

63.9 40.1 5.95 8 5

The linear velocity at the contact point between the rolling element and the outer raceway is vo，The
linear velocity at the contact point between the rolling element and the inner raceway is vi，Assumed
angular velocity of the outer ring ωo，Angular velocity of the inner ring ωi，Outer ring radius Ro，Inner
ring radius Ri，then:
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The linear velocity of the ball center in the retainer is:
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Since the outer ring of the bearing is fixed，Therefore vo=0，Then:
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That is, the angular velocity of the cage is:
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Since the inner ring of the bearing is fixed to the shaft,Therefore, the rotational speed of the inner
ring is equal to that of the rotor,That is ωi=ω，Then:
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During the rotation of a rolling bearing, the radial load acting on the rolling elements varies with
their angular position, resulting in periodic vibrations, known as rolling element passage vibration, also
referred to as VC vibration. Its frequency can be expressed as:

vc c bf N  （6）

2.1.2 Load Analysis of Rolling Bearing

The simplified model of the rolling bearing is shown in Figure 1.



Figure 1 Schematic Diagram of the Rolling Bearing Model

Let the angular position of the i-th rolling element be θi，Then:
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The formula for the elastic deformation at the contact point is:
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Where: Γ,Σ — Hertzian contact coefficients determined by the properties of the contact surfaces;E
— Young's modulus, N/m²;υ— Poisson's ratio;Σρ— the sum of the curvature radii of the contact
elements, m⁻¹.

According to Equation (8), the contact stiffness of the rolling bearing can be obtained as:
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In this paper, E = 2.1×1011N/m2，υ = 0.3，Σρ = 266 m-1，2Γk/Σπ = 1.Substituting these parameters
into Equation (9) yields the contact stiffness as:

39 213.34 10 / mbk N  （10）

As shown in the figure, the expression for the elastic deformation of the i-th rolling element in
contact with the inner and outer raceways at any given moment is:

cos sini i ir x y      （11）

By summing the contact forces acting on each rolling element of the bearing, the total Hertzian
contact forces of the left and right bearings in the x and y directions can be obtained as:
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In the equation, Nb is the number of balls, and the subscript “+” indicates that the value inside the
brackets is taken as a positive value. If the expression inside the brackets is greater than zero, the ball at
angular position θi is under load and contributes an increment to the total contact force. If the
expression inside the brackets is less than or equal to zero, the rolling element is not within the load
zone, and the corresponding Hertzian contact force is zero.

2.2 Bearing–Rotor System Model

2.2.1 Dynamic Model and Equations of Motion

The rolling bearing–rotor system established in this study consists of two identical rolling bearings
and a Jeffcott rotor. The simplified six-degree-of-freedom system is shown in Figure 2.

Figure 2 Mechanical Simplified Model of the Rolling Bearing–Rotor System

In Figure 2, O₁ and O₂ represent the geometric centers of the bearings and the rotor, respectively,
and O₃ denotes the mass center of the rotor. mp is the mass of the rotor; mL and mR are the rotor masses
at the left and right bearings, respectively. cb is the damping coefficient of the rotor at the bearings, and
cp is the damping coefficient of the rotor at the disk. k denotes the shaft stiffness. fxL and fyL are the total
Hertzian contact forces of the left bearing in the x and y directions, respectively, and fxR and fyR are
those of the right bearing.

According to Newton's second law, the nonlinear equations of motion of the system can be obtained
as:
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In the equations, xₚ and yₚ represent the displacements of the rotor at the disk in the x and y
directions, respectively; xR、yR represent the displacements of the rotor at the right bearing in the x and
y directions, respectively; xL and yL represent the displacements of the rotor at the left bearing in the x
and y directions, respectively; e denotes the mass eccentricity of the system.

3. Solution and Analysis of the System's Nonlinear Dynamics

This section focuses on the dynamic behavior exhibited by the system as the rotational speed varies
when the eccentricity e = 0.03 mm. The bifurcation diagram of the displacement xₚ with respect to the
rotational speed ω is shown in Figure 3.



Figure 3 Bifurcation Diagram of xₚ with Respect to Rotational Speed

In interval ωϵ[2500,1938], as shown in Figure 3, the system exhibits period-one motion at high
rotational speeds. As the rotational speed decreases, the motion transitions from period-one to
quasi-periodic. Further reduction in the rotational speed ω leads to chaotic motion. During this phase,
the system experiences highly unstable vibrations, which significantly affect operational stability and
should be avoided. When the rotational speed decreases to 2060 rad/s, a reverse Hopf bifurcation
occurs, resulting in period-two motion. At this point, the system's vibration amplitude decreases, the
motion becomes more regular, and the operation stabilizes.

In interval ωϵ[1938,1736], due to the vibration response caused by rotational imbalance and the
VC vibration response induced by the periodic variation in overall bearing stiffness, the Poincaré map
displays closed curves, indicating quasi-periodic motion. As the rotational speed ω further decreases to
1770 rad/s, the system enters a quasi-periodic state with period-seven behavior. Within this interval, the
system shows large vibration amplitudes and irregular dynamic responses, leading to unstable
operation.

Conclusion

Based on the above analysis, during the operation of the rolling bearing–rotor system, the excitation
caused by rotational imbalance gradually intensifies with increasing rotational speed, and the system
primarily vibrates under the influence of this unbalanced force. In particular, within speed interval
ωϵ[1938,1736], the system exhibits complex motion states, including periodic motion, quasi-periodic
motion, and chaos, with relatively large vibration amplitudes. The system operates unstably in this
range, exerting a significant impact on the bearing–rotor system. Therefore, appropriately adjusting the
operating speed of the rotor system can maintain stable periodic motion, reduce adverse vibrations that
may damage the rotor, and enhance the overall stability and reliability of the system.
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