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Abstract: The optimization of CNC machine tool processing parameters serves as a critical link in 
achieving efficient, high-quality, and low-cost manufacturing. Traditional methods struggle to address 
its complex characteristics, including multiple objectives, multiple constraints, and strongly coupled 
parameters. This study aims to design and implement a hybrid intelligent optimization algorithm 
tailored to this problem. First, by quantitatively characterizing multiple objectives such as processing 
efficiency, tool life, and surface quality, and strictly defining constraints of the process system including 
machine power, cutting force, and chatter stability, a high-fidelity multi-objective optimization 
mathematical model is established. Second, a hybrid intelligent algorithm integrating adaptive global 
search and local directional development is designed. The algorithm balances exploration and 
exploitation through an adaptive mechanism based on population distribution entropy, introduces 
quasi-gradient information to design directional evolution operators for accelerated convergence, and 
employs a bi-level strategy to handle complex constraints and generate a uniformly distributed Pareto 
compromise solution set. Finally, the modular software implementation and parallel computing 
optimization strategies of the algorithm are elaborated; an evaluation system comprising algorithm 
performance and process gain indicators is constructed; and a framework for an offline integrated 
verification platform based on high-fidelity process simulation is proposed. This study provides a 
systematic solution covering algorithm design, implementation, and verification for achieving 
intelligent and automated optimization of processing parameters. 
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Introduction 

The selection of processing parameters for CNC machine tools directly influences the efficiency, 
cost, and final product quality of the manufacturing process. Its optimization is highly challenging due 
to the involvement of conflicting process objectives, complex physical constraints, and nonlinear 
coupling among parameters. Traditional parameter setting methods based on experience or 
trial-and-error lack scientific rigor and general applicability, while optimization approaches grounded 
in classical mathematical programming are often inefficient or prone to converging to local optima 
when dealing with such high-dimensional, non-convex, and computationally expensive "black-box" 
problems. Therefore, developing intelligent optimization algorithms capable of autonomous 
optimization, balancing global exploration and local exploitation, and effectively handling multiple 
objectives and complex constraints holds significant theoretical and engineering importance for 
enhancing the intelligence level of CNC machining and unlocking the potential of process systems. 
This study conducts systematic work from problem modeling and algorithm innovation to 
implementation and verification, aiming to design an efficient and robust hybrid intelligent 
optimization algorithm, thereby providing a new technical pathway to overcome the traditional 
bottlenecks in machining parameter optimization. 



1. Mathematical Modeling and Constraint Analysis of the Machining Parameter Optimization 
Problem 

1.1 Quantitative Characterization of Machining Process Objective Functions 

The core of optimizing CNC machine tool processing parameters lies in the collaborative 
optimization of multiple, often conflicting, process objectives. The primary objective is to maximize 
the Material Removal Rate (MRR), whose quantitative expression is typically defined as the product 
function of cutting speed, feed rate, and depth of cut, directly impacting machining efficiency. 
Competing with this is the objective of tool life or wear cost, commonly described by an extended 
Taylor tool life equation. This equation reveals the exponential relationship between cutting parameters 
and tool durability. The pursuit of a balance between high efficiency and low consumption constitutes 
the fundamental optimization conflict. 

Machining surface integrity and process stability constitute another category of critical objectives. 
Surface roughness can be predicted through empirical models or theoretical models based on cutting 
geometry and dynamics, typically expressed as a function of parameters such as feed rate and tool nose 
radius. Unstable phenomena like chatter are avoided through stability lobe diagram theory, which treats 
spindle speed and axial depth of cut as key variables, with the objective of maximizing the chatter-free 
cutting region. These objective functions together form a typical mathematical model for a nonlinear, 
multi-peak, multi-objective optimization problem[1]. 

1.2 Mathematical Definition of Hard and Soft Constraints in the Process System 

Hard constraints in the process system originate from the physical limits of CNC machine tools and 
cutting tools, forming the absolute boundaries of the optimization search space. These constraints are 
typically expressed in the form of inequalities, including the spindle's maximum speed limit, the 
maximum output power and torque constraints of the spindle motor, and the maximum allowable feed 
rates and acceleration limits for each feed axis. Constraints related to the cutting tool involve the 
maximum allowable cutting force, cutting edge strength, and the rigidity threshold of the clamping 
system. Exceeding these boundaries will lead to equipment damage or machining interruption, and thus 
must be treated as mandatory constraint conditions within the mathematical model. 

Soft constraints primarily concern machining process requirements and quality assurance. Although 
not absolutely inviolable, violating them will lead to unacceptable consequences. The stability 
constraint of the cutting process, namely avoiding chatter occurrence, can be transformed into dynamic 
restriction zones for spindle speed and depth of cut through the stability lobe diagram model. Chip 
control requirements can be translated into constraint relationships between feed rate and chip breaker 
geometry. Surface integrity indicators, such as workpiece geometric accuracy and residual stress, are 
formed into threshold-type constraints by establishing correlation models with cutting force and 
thermal loads. In algorithm design, soft constraints are often integrated into the optimization process 
via penalty function methods or feasibility rules. 

1.3 Formal Analysis of Parameter Coupling and Problem Complexity 

Significant physical coupling effects exist among cutting parameters, resulting in the optimization 
problem exhibiting a high degree of nonlinearity. Cutting force models, such as classical mechanistic 
models or artificial intelligence (AI)-based prediction models, clearly reveal the coupling 
relationships-mediated through cutting coefficients-among cutting speed, feed rate, depth of cut, and 
tool geometry parameters. This coupling implies that adjusting a single parameter nonlinearly 
influences multiple output responses. For instance, increasing the feed rate improves efficiency but may 
also exponentially increase cutting force and thermal load, thereby exacerbating tool wear and 
degrading surface quality. Consequently, the solution space presents a complex, non-convex landscape. 

The aforementioned coupling characteristics directly determine the high-dimensionality and 
complexity of the machining parameter optimization problem. Design variables not only include direct 
cutting parameters but may also encompass tool paths and cooling strategies in more refined models, 
leading to an increase in search dimensions. Objective and constraint functions are mostly defined by 
implicit or explicit nonlinear equations, and evaluating a single function value often requires invoking 
complex simulation or empirical models, resulting in high computational cost. This "black-box" or 
"grey-box" nature, coupled with the prevalence of local optima within the solution space, renders 



traditional gradient-based optimization methods highly prone to failure. This formally substantiates the 
necessity of employing intelligent optimization algorithms with global search capabilities[2]. 

2. Design of a Hybrid Intelligent Algorithm for Machining Parameter Optimization 

2.1 Construction of a Global Search Strategy Based on an Adaptive Mechanism 

The high-dimensional, nonlinear solution space of machining parameter optimization requires the 
algorithm to possess robust global exploration capabilities. Fixed-parameter strategies in traditional 
evolutionary algorithms struggle to adapt to the dynamic changes in population diversity during the 
search process. To address this, this chapter proposes an adaptive mechanism based on population 
distribution entropy and evolutionary stagnation detection. This mechanism quantifies population 
diversity in real-time by calculating the distribution entropy of the solution set. When the entropy value 
falls below a threshold, it automatically increases the mutation probability and introduces perturbations 
based on the Cauchy distribution to counter the risk of premature convergence. 

This mechanism is further integrated with evolutionary phase identification. By monitoring the 
improvement rate of historical optimal solutions, the algorithm can dynamically determine whether the 
search is in a state of global exploration, local exploitation, or stagnation. During the exploration phase, 
it emphasizes the use of operators such as arithmetic crossover to broaden the search scope; during 
stagnation phases, it adaptively switches the type of mutation operator based on response surface 
characteristics, for instance, selecting between Gaussian mutation and Lévy flight mutation, aiming to 
escape local optima. This strategy, which couples real-time state feedback with operator selection, 
forms a dynamic closed-loop global search system. It achieves autonomous balance between the 
breadth and depth of exploration, thereby providing a high-quality initial solution set for subsequent 
refined search. 

2.2 Design of a Directional Evolution Operator Incorporating Local Gradient Information 

After global search locates promising potential optimal regions, the convergence accuracy and 
speed of the algorithm largely depend on its local exploitation capability. Classical evolutionary 
algorithms primarily rely on probabilistic operators and population competition, lacking directional 
guidance during the local search phase, which often limits their convergence speed. To enhance the 
optimization efficiency of the algorithm in the later stages of machining parameter optimization, this 
section designs a directional evolution operator that incorporates quasi-gradient information[3]. This 
operator does not require the objective function to be explicitly differentiable. Instead, it strategically 
samples within the neighborhood of the current optimal individual to construct a linear or quadratic 
response surface model, thereby estimating the approximate gradient or the direction of steepest 
descent in that local region. This process is completed through a limited number of additional 
evaluations of the objective function values, keeping the computational overhead controllable. 

Based on the obtained quasi-gradient direction, the operator performs constrained directional 
mutation. New individuals undergo biased exploration on both the positive and negative sides of the 
gradient direction, with their step size adaptively linked to the distance to constraint boundaries and the 
evolutionary generation. To prevent misguidance caused by inaccurate gradient information, this 
operator is executed in a mixed manner with local random search at a certain probability. Addressing 
the coupling effects among parameters, the operator constructs an empirical covariance matrix by 
analyzing historical successful mutation vectors. This matrix is used to adjust the step size ratios across 
different dimensions during directional mutation, thereby enabling more efficient search along the local 
ridge directions of the solution space. This design enhances the algorithm's fine-tuning capability near 
feasible region boundaries or under complex constraint conditions, accelerating the approximation of 
the Pareto front or the global optimal solution. 

2.3 Complex Constraint Handling and Generation Mechanism for Multi-Objective Compromise 
Solutions 

CNC machining parameter optimization is inherently a multi-objective optimization problem 
constrained by multiple complex factors, including machine power, cutting force, surface roughness 
thresholds, and chatter stability, some of which are nonlinear and conflicting. The algorithm must 
simultaneously address the dual challenges of constraint satisfaction and multi-objective optimization. 



Regarding constraint handling, a dual-layer hybrid strategy is adopted. The first layer is a 
feasibility-first selection rule, where a feasible solution is always superior to any infeasible solution in 
any individual comparison. The second layer focuses on the retention and repair of infeasible solutions, 
designing a tournament selection mechanism based on constraint violation degree ranking. This 
mechanism allows a small number of borderline infeasible solutions to participate in evolution with a 
certain probability. The purpose is to utilize the information carried by these solutions, which may 
guide the search through infeasible regions-this is particularly important for separated feasible regions. 

Within the multi-objective optimization framework, the algorithm adopts an elite retention strategy 
based on non-dominated sorting. Individuals in the population are first stratified according to Pareto 
dominance relationships, and the distribution density of individuals within the same non-dominated 
layer in the objective space is measured by calculating the crowding distance. Selection and elite 
retention operations prioritize non-dominated layers with higher ranks, and within the same layer, 
individuals with larger crowding distances are preferred. This approach aims to maintain selection 
pressure towards the Pareto front while preserving the diversity of the solution set as much as possible. 
To effectively generate compromise solutions, the algorithm introduces reference points or weight 
vectors to guide the search direction. However, unlike traditional methods, these reference points are 
not fixed. Based on the shape of the currently discovered front, the algorithm dynamically adjusts the 
distribution of reference points or the weights of the aggregation function, enabling search resources to 
adaptively focus on regions of the front that are sparsely distributed or not yet sufficiently explored[4]. 

Finally, the constraint handling mechanism and the multi-objective search mechanism are 
organically integrated. The constraint violation degree is treated either as an additional optimization 
objective or as a penalty term during the non-dominated sorting process, ensuring that the final output 
solution set consists entirely of feasible solutions. Upon completion of the algorithm's execution, it 
provides a uniformly distributed Pareto non-dominated solution set. This set clearly reveals the 
trade-off relationships among multiple objectives such as machining efficiency, machining quality, and 
tool life. Decision-makers can select the combination of machining parameters that best meets the 
requirements of the specific production scenario from this solution set, thereby achieving an effective 
transition from algorithmic optimization to engineering decision-making. 

3. Algorithm Implementation and CNC System Integrated Verification Framework 

3.1 Software Implementation and Performance Optimization of the Algorithm Core Modules 

The engineering implementation of the hybrid intelligent algorithm relies on a modular software 
architecture design. This architecture encapsulates core functionalities-such as adaptive global search, 
directional evolution operators, constraint handling, and multi-objective optimization-into independent 
computational units. Population individuals employ floating-point encoding, where their chromosome 
structure directly maps to optimization variables like cutting speed, feed rate, and depth of cut. The 
main algorithm loop control module coordinates the calling sequence and data flow among these units 
and maintains a global elite solution archive. Key data structures include multidimensional arrays for 
storing population states, dynamic linked lists for recording the non-dominated solution set, and hash 
tables for caching historical fitness evaluation results. This approach avoids redundant calculations for 
identical parameter combinations, significantly reducing the invocation overhead associated with 
high-fidelity process models or simulation interfaces[5]. 

To address the characteristic of high computational cost in fitness evaluation for machining 
parameter optimization, the algorithm's performance optimization focuses on enhancing overall search 
efficiency. On one hand, multi-threading or parallel computing frameworks are utilized to parallelize 
the fitness evaluation of population individuals. The calculation of each individual's objective and 
constraint functions is treated as an independent task, scheduled via a thread pool. This fully leverages 
multi-core processor resources, reducing the algorithm's runtime from linear to near-constant levels. On 
the other hand, surrogate model technology is introduced during the iterative process. In the initial 
stage of the algorithm, a certain number of sample points are obtained using Latin Hypercube Sampling. 
Approximate models for the objectives and constraints are then constructed via Radial Basis Function 
networks or Kriging models. In subsequent searches, the preliminary screening of some individuals 
will be based on predictions from the surrogate models, with precise physical or simulation evaluations 
conducted only for individuals exhibiting excellent predicted performance. This two-stage strategy of 
"approximate evaluation followed by precise verification" significantly reduces the number of 
time-consuming high-fidelity computations while ensuring the reliability of the search direction. 



3.2 Algorithm Performance Evaluation Indicator System for CNC Machining 

To comprehensively and objectively evaluate the effectiveness of the proposed algorithm, it is 
necessary to construct a multi-dimensional performance evaluation indicator system. This system first 
encompasses metrics for the algorithm's own convergence and diversity. Convergence is quantified 
using indicators such as Generational Distance or Inverted Generational Distance, which measure the 
closeness between the non-dominated solution set generated by the algorithm iteration and a reference 
Pareto front. Diversity is assessed through indicators of the solution set's distribution uniformity, such 
as the Spacing metric or the Maximum Spread metric, to ensure that the final set of parameter solutions 
covers a wide range of trade-off choices. The Hypervolume indicator is used as a comprehensive 
evaluation criterion because it simultaneously reflects both convergence and distribution; it measures 
the size of the hypervolume dominated by the solution set in the objective space. 

Beyond general algorithm metrics, the system places greater emphasis on specialized verification 
indicators directly linked to the physical process of CNC machining. These indicators include the 
expected process gains from the computed optimal parameter sets, such as the predicted percentage 
increase in material removal rate, the reduction in surface roughness, or the extension ratio of tool life 
compared to empirical parameters. Algorithm robustness is examined through the stability of its 
optimization results across multiple sets of different initial populations and different workpiece-tool 
material combinations, calculating the standard deviation or success rate of the objective function 
values. The algorithm's time complexity and computational resource consumption are recorded and 
analyzed to evaluate its engineering applicability. Finally, the evaluation system employs a weighted 
composite scorecard encompassing all the aforementioned indicators to provide a quantitative and 
structured basis for comparing the performance of different intelligent optimization algorithms within 
the specific domain of CNC machining parameter optimization[6]. 

3.3 Construction of an Integrated Verification Platform Based on Machining Process Simulation 

Before applying the algorithm to actual machine tools, constructing a simulation-based offline 
integrated verification platform is crucial. The core of this platform is a standardized data exchange and 
process execution engine. The algorithm module serves as an optimization server, receiving 
optimization task configurations-including objective function weights, constraint thresholds, and 
machine-tool-workpiece combination parameters-through predefined application programming 
interfaces (APIs). The candidate machining parameter sets generated by the optimization are 
automatically packaged by the platform and passed to the downstream high-fidelity machining process 
simulation module. This simulation module integrates commercial or self-developed components for 
cutting mechanics simulation, thermo-mechanical coupling simulation, and geometric accuracy 
simulation. It is capable of simulating cutting forces, temperature fields, vibration states, and the final 
workpiece morphology and dimensional errors under the given parameters. 

The key to constructing the platform lies in achieving seamless conversion from optimized 
parameters to executable simulation instructions. This is typically accomplished through a neutral 
process description layer, such as the extended STEP-NC standard or a custom XML process template. 
The parameters output by the algorithm are populated into this template, generating an intermediate file 
containing complete process information. The simulation platform parses this file, drives the various 
simulators to execute sequentially, and collects simulation result data such as forces, thermal effects, 
vibrations, and roughness. This data is fed back to the evaluation module, which calculates 
performance based on the established indicator system and generates visualization reports. These 
reports may include comparison radar charts of parameter sets before and after optimization, Pareto 
front distribution diagrams, and comparative simulation cloud plots. This closed-loop verification 
process not only confirms the effectiveness and safety of the algorithmic optimization outcomes in a 
virtual environment-avoiding costly physical trial cuts-but also provides an efficient experimental 
setting for iterative algorithm improvement and parameter tuning. It thus constitutes a reliable bridge 
connecting intelligent algorithm design with practical machining application. 

Conclusion 

This study addresses the intelligent optimization problem of CNC machine tool processing 
parameters, completing systematic work spanning mathematical modeling, algorithm design, software 
implementation, and verification framework construction. The proposed hybrid intelligent algorithm, 



through the integration of an adaptive global search mechanism and directional evolution operators 
incorporating local gradient information, effectively balances the breadth and depth of the search. Its 
innovative framework for handling complex constraints and dynamic multi-objective optimization is 
capable of generating well-distributed Pareto-optimal solution sets. The modular software 
implementation and performance optimization strategies ensure the algorithm's engineering practicality, 
while the simulation-based integrated verification platform provides a reliable environment for 
evaluating and iterating on the algorithm's performance. Future research can focus on the following 
directions: exploring real-time interaction mechanisms between the algorithm and online monitoring 
data to achieve adaptive optimization based on dynamic perception of machining states; investigating 
the application of the algorithm to more complex multi-process, full-process-chain collaborative 
optimization; and advancing the deep integration of the algorithm with digital twin systems to construct 
more autonomous intelligent machining systems. 

References 

[1] Tang Yongzhong, Lu Jian, and Wang Kuantian. "An Optimization Method for Milling Parameters of 
CNC Machine Tools Based on Improved Genetic Algorithm." Machine Tool & Hydraulics 52.10 (2024): 
27-32. 
[2] Yang Weizhong. "Optimization and Experiment of Machining Process Parameters for CNC 
Machine Tools." Agricultural Machinery Use & Maintenance .10 (2023): 56-59. 
[3] Ma Jingyu. Research on Optimization of CNC Machine Tool Machining Parameters Based on 
Machine Learning. 2023. Tianjin University of Technology and Education, MA thesis. 
[4] Qin Honglang. "Optimization of CNC Machine Tool Machining Parameters Based on Real-time 
Acquisition Instruction Domain Oscilloscope." Adhesion 47.09 (2021): 138-141+159. 
[5] Wang Wenhao. Research on High-efficiency CNC Machining Parameter Optimization Method 
Considering Tool Wear. 2021. Tianjin University, MA thesis. 
[6] Wang Dechao, et al. "Research on Optimization Method of NC Milling Parameters." Journal of 
Yanbian University (Natural Science Edition) 46.04 (2020): 333-338. 
 


