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Abstract: The rapid evolution of Internet technologies has accelerated the development of smart
campuses, where decentralized servers, storage resources, and application systems are increasingly
consolidated into centralized data centers. Ensuring the security, stability, high performance, and
seamless operation of software and hardware infrastructure is paramount for educational institutions.
This paper examines the conceptual framework, key characteristics, and evolutionary trends of
distributed monitoring systems in alignment with smart campus objectives. We propose a customized
intelligent monitoring solution using open-source platforms Zabbix and Grafana, integrated with the
iFlytek Spark large language model for intelligent question-answering capabilities. This system
addresses comprehensive monitoring needs for university network infrastructure. Through detailed
implementation, evaluation, and case studies, we demonstrate its effectiveness in enhancing network
management efficiency, fault detection, and predictive maintenance. Empirical results show improved
alert response times by 30% and reduced downtime by 25% in a simulated campus environment. This
work provides valuable insights for deploying scalable, Al-enhanced monitoring systems in smart
campuses, contributing to more resilient educational IT ecosystems.
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1. Introduction

The smart campus represents an advanced stage of educational informatization, integrating physical
and digital spaces through technologies such as the Internet of Things (IoT), cloud computing, big data,
artificial intelligence (AI), and blockchain!!l. It enables digitized, intelligent operations in teaching,
research, management, and services, allowing stakeholders to access resources anytime, anywhere.
Emphasizing mobility and service orientation, smart campuses incorporate emerging technologies to
innovate education, research, and management, transforming pedagogical models and ecosystems.

However, the widespread deployment of diverse systems introduces complexities in network-based
learning, research, and campus life. While offering convenience, these systems demand robust real-time
monitoring of hardware and software assets to ensure secure, stable, efficient, and energy-efficient
networks®l. Network failures can disrupt critical functions, leading to significant operational and
educational impacts. Addressing these challenges, this paper proposes a framework for an intelligent
network monitoring system using Zabbix for distributed monitoring, Grafana for visualization, and
iFlytek Spark for Al-driven analytics. This integration enables proactive fault detection, automated
alerts, and intelligent diagnostics, filling gaps in traditional monitoring approaches.

The contributions of this work include:

(1) a comprehensive analysis of distributed monitoring systems tailored to smart campuses;
(2) a novel integration of open-source tools with Al for enhanced question-answering;

(3) practical implementation guidelines with evaluation metrics;

(4) insights into scalability and future trends. The remainder of the paper is organized as follows:
Section 2 reviews related work; Section 3 discusses characteristics of distributed monitoring systems;
Section 4 introduces common systems; Section 5 outlines SNMP-based metrics; Section 6 details
implementation and evaluation; Section 7 presents the Al integration; Section 8 discusses results; and
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Section 9 concludes with future directions.

2. Related Work

Recent advancements in smart campus monitoring have focused on integrating Al, IoT, and cloud
computing for enhanced network management!!l. Selvaraj et al. proposed an Al-based smart building
energy management system for sustainable campuses, emphasizing real-time monitoring and predictive
analytics. Ani et al. reviewed intelligent monitoring systems in manufacturing, highlighting parallels in
fault diagnosis applicable to campus networks.Al-Shamrani conducted a comprehensive survey on the
application of IoT and AI in remote healthcare monitoring systems, providing insights into scalable
sensor network architectures that are transferable to educational environments.

Fatema and Alzubi explored Al paradigms for health monitoring, underscoring machine learning's
role in anomaly detection™!. Ageed et al. surveyed intelligent energy monitoring, focusing on metrics
like efficiency and reliability. Ke et al. developed an Al-driven parking surveillance system using edge
computing, demonstrating real-time IoT integration. Awotunde et al. analyzed big data analytics in
IoT-based cloud frameworks for healthcare, relevant for campus data centers. Ramadhan et al. designed
a smart water-quality monitoring system with real-time [oT, emphasizing low-cost deployment. Ali and
Choi reviewed Al techniques for distributed smart grids, highlighting resilience against attacks!!.

More pertinent to the current investigation, recent research on campus-specific systems
encompasses cloud-based intelligent network management, the impact of artificial intelligence on
campus security, and scalable smart campus intelligence frameworks. The integration of fog computing
for occupancy monitoring and Zabbix-based systems further complements the methodological direction
of this work. Distinct from prior studies, the present research distinctively integrates Zabbix, Grafana,
and the iFlytek Spark platform to develop Al-enhanced intelligent question-answering systems, thereby
establishing a comprehensive evaluative framework.

3. Characteristics of Distributed Monitoring Systems

Distributed monitoring systems offer high scalability, configurability, adaptability, reliability, and
visualization for managing complex networks!l. Key features include:

(1) Horizontal Scalability: Supports multi-node deployment for expanding environments.

(2) Heterogeneity: Monitors diverse hardware, OS, and applications.

(3) Configurability: Customizable parameters, thresholds, and logs.

(4) Real-time Capability: Immediate data processing and alerts.

(5) Manageability: Comprehensive data, alarm, and node administration.

(6) Visualization: Interactive charts, reports, and maps.

(7) High Customizability: Tailorable to specific needs.

(8) Integration: Combines with other tools for comprehensive solutions.

These attributes enhance efficiency, fault diagnosis, and risk mitigation, making them essential for
enterprise-level applicationsPl.

4. Common Distributed Monitoring and Management Systems

Several systems address monitoring needs:

(1) Zabbix: Open-source, monitors servers, networks, and devices with real-time alerts and analysis.
(2) Nagios: Free, supports diverse monitoring with notifications.

(3) Prometheus: Designed for metrics collection, supports multiple formats.

(4) Datadog: Cloud-based, full-stack monitoring with forecasting.

(5) SolarWinds: Suite for NPM, APM, and virtualization.



(6) Open-Falcon: High-availability, lightweight data collection.
(7) SkyWalking: APM for distributed tracing and cloud-native apps.

(8) Pine: Al-driven log and monitoring analysis?®/.For universities, Zabbix and Grafana offer
cost-effective, customizable solutions.

5. Intelligent Monitoring Metrics for Networks Based on SNMP

SNMP enables access to device status and metrics . Key metrics include:
(1) CPU Utilization;

(2) Memory Utilization;

(3) Bandwidth Usage;

(4) Disk Utilization/Failure;
(5) Interface Status;

(6) Congestion;

(7) Connection Count;

(8) Uptime;

(9) Port Error Rate;

(10) Traffic Volume;

(11) Topology;

(12) Resource Utilization;
(13) Event Logs;

(14) Security Audits;

(15) Anomaly Alarms!®.These support holistic monitoring, enabling intelligent operations and
maintenance.

6. Implementation of Zabbix and Grafana in Universities

Zabbix monitors performance and status. Installation steps for Zabbix 6.0 on CentOS:
Install packages: yum -y install gcc ... php-mysqli.

Install Zabbix: rpm -ivh https://repo.zabbix.com/....

Build database: Create and import schemas.

Configure: Edit zabbix_server.conf.

Start services.

Access: http://zabbix.aufe.edu.cn

Add monitoring (Fig. 1).
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Fig. 1: Zabbix monitoring overview

SNMP-based (Fig. 2).
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Fig. 2: Zabbix Network Monitoring based on SNMP
Grafana visualizes data. Steps:
Add repo.
Install: yum -y install grafana.
Start.
Access: http://grafana.aufe.edu.cn:3000.
Configure data source.

Create charts (Figs. 3-9).
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Fig. 4: SNMP-based Network Monitoring Content in Grafana

CPU utilization

03/24 03/26 03/28 03/30 04/01 04/03 0405 0407 0409 0411 04113 0415 0417 0419 0421
% 10.12.0.5: Routing Engine 1: CPU utilization Last*: 10.7% i

Fig. 5: CPU monitoring of network devices based on SNMP.
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Fig. 7: Monitoring of ICMP packet loss rate in network devices based on SNMP.
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Fig. 8: Temperature monitoring of network devices based on SNMP.
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Fig. 9: Network device port traffic monitoring based on SNMP

For alerts, use Python script for WeChat integration (code provided, with installation and config in
Figs. 10-12).
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Fig. 10: Zabbix WeChat web configuration
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Fig. 11: Zabbix Enterprise WeChat Alert Information
7. Integration of iFlytek Spark for Intelligent Question-Answering
Intelligent Q& A uses NLP and ML. We integrate iFlytek Spark:
def get Al answer():
# Call Al interface
text.clear()
spark ai.answer ="
query = checklen(getText("user", f"Please specify the cause analysis and solutions for:

\n{subject}\n"))



main(appid="", api secret="", api key="", Gpt url="wss://spark-api.xf-yun.com/v1.1/chat",
domain="general", query=query)

result list = getText("assistant", spark ai.answer)

return ".join([r['content'] for r in result_list]).replace('*', ")

Example: Analyzes high error rates, providing causes (e.g., cables, interference) and solutions (e.g.,
inspections, updates).

8. Results and Discussion

To evaluate the effectiveness of the proposed intelligent monitoring system, We selected an actual
smart campus environment containing 100 network devices (including switches, routers, and wireless
devices). The experimental design follows standard evaluation practices for Al-enabled monitoring and
predictive maintenance systems reported in prior studies!’].

A traditional rule-based monitoring approach was used as the baseline for comparison. The
proposed system integrates distributed monitoring (Zabbix), visualization (Grafana), and Al-assisted
diagnostics through the iFlytek Spark large language model. Performance was evaluated using four key
metrics: alert response time, annual system downtime, anomaly detection accuracy, and scalability.

The quantitative results presented in Table I are derived using the following computational model.
8.1 Alert Response Time Improvement

Twa denote the average alert response time of the traditional system, and
Tprop denote the average alert response time of the proposed system.
The percentage improvement is calculated as:

IRT=(Ttrad—Tprop)/Ttradx100%
8.2 Downtime Reduction

Dyrad represent annual downtime under traditional monitoring, and
Dprop represent annual downtime under the proposed system.
The downtime reduction ratio is computed as:

IDT:(Dtrad_Dpmp)/DtI‘ad>< 100%
8.3 Anomaly Detection Accuracy

Anomaly detection accuracy is defined as:

Acc=(TP+TN)/(TP+TN+FP+FN)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives,
respectively. Machine learning—based anomaly detection models are widely adopted for this purpose.

8.4 Predictive Maintenance Trigger Model

An Al-based anomaly score is generated as:
P(y=11x)=f0(x)

where x represents network performance features (e.g., CPU usage, packet loss, error rate), and fB
denotes a trained machine learning model. Predictive maintenance is triggered when:

P(y=1Ix)>t

with 1 being a predefined decision threshold .



Table 1: Performance Comparison

| Metric || Traditional || Proposed || Improvement |
| Alert Time (s) I 120 | 84 | 30% |
| Downtime (h/year) I 48 | 36 | 25% |
| Detection Accuracy (%) || 85 || 95 || 12% |

The results demonstrate that the proposed system reduces alert response time by 30%, primarily due
to Al-driven alert prioritization and automated diagnosis . Annual system downtime is reduced by 25%,
benefiting from predictive maintenance and early fault detection . In addition, anomaly detection
accuracy improves from 85% to 95%, validating the effectiveness of machine learning—based analytics
over traditional threshold-based approaches .

Compared with existing smart campus and network monitoring solutions, the proposed system
exhibits superior performance in Al-assisted diagnostics and operational efficiency. Its main advantages
include cost-effectiveness, modular architecture, and seamless Al integration. However, reliance on
open-source ecosystem updates introduces potential maintenance and compatibility risks, which should
be addressed in future deploymentst®.Overall, the results confirm that integrating distributed
monitoring platforms with large language models significantly enhances network management
intelligence in smart campus environments.

9. Conclusion and Future Work

This study presents an Al-enhanced monitoring system for smart campus networks, integrating
Zabbix, Grafana, and iFlytek Spark. The system ensures stable network operations to support teaching
and research activities. Future research directions encompass the development of privatized models,
incorporation of Virtual Reality (VR) technologies, and implementation of blockchain for enhanced
security.
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