Construction of a Memory Safety Model for
Concurrent Programs Based on Formal Verification

Hao Su”

Hainan Vocational University of Science and Technology, Haikou, 571126, China
*Corresponding author: suhao2580@126.com

Abstract: As multi-core processors become the mainstream in computing, the memory safety issues of
concurrent programs have grown increasingly severe due to their nondeterministic interactions.
Formal verification, which provides rigorous guarantees for program correctness through
mathematical methods, serves as a key approach to addressing this challenge. This paper aims to
systematically construct a memory safety model for concurrent programs based on formal verification.
The research first clarifies the formal definitions of spatial and temporal safety in concurrent
environments and precisely characterizes shared memory interactions based on interleaving semantics
and operational semantics. Subsequently, a modeling approach oriented toward concurrent memory
safety is proposed, including abstract state machine modeling, logical representation of execution
traces, and an extended separation logic resource specification framework. Finally, the study
investigates automatic construction and refinement strategies for model invariants, explores
verification algorithms such as symbolic execution and abstract interpretation, and designs a modular,
extensible verification framework. This research provides a comprehensive technical pathway from
theory to methodology for the systematic verification of concurrent memory safety.

Keywords: Formal Verification, Concurrent Programs;, Memory Safety; Separation Logic, Model
Construction; Symbolic Execution; Abstract Interpretation

Introduction

Against the backdrop of the ever-increasing complexity of software systems, concurrent
programming has emerged as a crucial technology for achieving high performance and responsiveness.
However, concurrent access to shared memory introduces issues such as data races, atomicity
violations, and order violations. These interaction defects can directly lead to subtle yet critical memory
safety violations, including buffer overflows and dangling pointer dereferences, which pose significant
threats to system reliability and security. Due to the highly non-deterministic and scenario-dependent
nature of concurrency errors, traditional methods like dynamic testing and code review possess inherent
limitations and struggle to exhaust all possible thread interleavings. Consequently, advancing formal
verification techniques capable of providing rigorous mathematical proofs of program correctness
holds urgent research significance and necessity for constructing high-assurance concurrent systems.
The research presented in this paper precisely focuses on how to systematically construct a formal
verification model tailored for the memory safety properties of concurrent programs. This model must
not only provide a precise description of complex memory safety properties—encompassing both
spatial and temporal dimensions—and their variations within the concurrent context but also establish a
complete methodological framework. This framework spans from program semantic characterization
and formal specification to automated verification algorithms, aiming to address core challenges such
as state space explosion and verification complexity. Ultimately, it seeks to lay a solid theoretical
foundation and provide a feasible technical solution for achieving reliable guarantees of memory safety
in concurrent programs.

1. Formal Theoretical Foundations for Memory Safety in Concurrent Programs
1.1 Formal Definition and Classification of Memory Safety Properties

The core of memory safety properties lies in ensuring that every memory access performed by a
program occurs within its permitted range and that the type of access conforms to the semantics defined



for that memory region. Formal methods employ precise mathematical language to characterize these
properties, typically decomposing memory safety into two orthogonal dimensions: spatial safety and
temporal safety. Spatial safety concerns the validity of pointer references, ensuring that pointer
dereference operations do not exceed bounds or access unallocated memory units. Temporal safety
pertains to the lifecycle of memory objects, prohibiting access to memory regions that have already
been freed, thereby eliminating dangling pointer dereferences. These two categories of properties can
be formally expressed using rules from predicate logic or type systems, such as employing assertions in
separation logic to describe exclusive ownership of memory regions, or encoding memory addresses
and lifecycle markers within types.

A systematic classification of memory safety properties serves as the prerequisite for constructing
targeted verification models. The fundamental classification can be conducted based on the severity of
violation consequences and the timing of detection. For instance, memory leaks, buffer overflows, and
double frees can be categorized as observable runtime errors. A deeper level of classification
distinguishes properties based on their degree of coupling with concurrent interactions, separating
so-called "concurrent memory safety" properties—those that hold in single-threaded environments but
may be violated under interleaved concurrent execution. The formalization of such properties requires
additional consideration of consistency constraints governing the transfer and evolution of memory
states across multiple execution threads, thereby laying the groundwork for subsequent
concurrency-specific modeling!!.

1.2 Semantic Characterization of Concurrent Computation Models and Shared Memory Interactions

The behavioral complexity of concurrent programs stems from their underlying computational
models' support for parallel, interleaved, or truly concurrent execution. Formal semantics provide a
precise mathematical foundation for understanding the interaction between concurrent programs and
shared memory. Interleaving semantics models concurrent execution as arbitrary linear interleavings of
atomic operations from multiple threads along a global timeline. While this model simplifies analysis,
it may fail to capture all permissible behaviors under weak hardware memory models. More refined
semantic models employ event structures or operational semantics to explicitly describe the partial
order relationships between memory operations (reads, writes, updates), as well as the constraints
imposed by memory barriers and synchronization primitives on the visibility and ordering of these
operations.

The semantic characterization of shared memory interactions must precisely reflect the
nondeterministic evolution of states. This is typically achieved through labeled transition systems,
where each state encapsulates a snapshot of the global shared memory along with the local states of
individual threads. The transition relation defines how a single thread’” s memory operations alter the
global state and may trigger changes in the state observed by other threads. For semantic
characterization of weak memory models (such as x86-TSO and ARMVS), it is further necessary to
introduce architectural details like store buffers and memory order rules, formally defining the core
issue of "when a write becomes visible to a read." This precise semantics serves as the sole basis for
subsequently determining whether a specific execution trace satisfies memory safety properties.

1.3 Correspondence Between Formal Verification Methods and Memory Safety Specifications

Formal verification aims to mathematically prove that a target system satisfies its formal
specifications. Verification methods targeting memory safety are primarily divided into two categories:
model checking based on automated reasoning, and theorem proving based on interactive proof. Model
checking systematically explores all possible concurrent execution paths of a program through state
space search or symbolic execution to determine whether any path exists that violates a given memory
safety specification!?!. The corresponding specifications are typically expressed as formulas in linear
temporal logic or computation tree logic, describing safety properties such as "never accessing an
illegal address." Theorem proving methods, on the other hand, encode both the program and its desired
safety properties within a higher-order logic system (such as Coq or Isabelle/HOL), establishing their
correctness through the construction of formal proofs.

The selection and construction of appropriate verification methods directly depend on the form of
expression and the complexity of the memory safety specifications. For complex specifications
articulated using resource logics such as separation logic, their verification often necessitates the
integration of specialized program logic reasoning systems. These systems embed rules governing the



transfer of memory resources and their permissions within their inference rules, enabling the natural
derivation of resource transfers and synchronization operations between threads. Refinement and
abstraction techniques bridge the gap between these methods by constructing abstract models of the
program (for instance, ignoring specific data values and focusing only on pointer aliasing relationships
and lock states) to reduce verification complexity, while ensuring that verification conclusions drawn
on this abstract model can be concretely reasoned back to the original program. This correspondence
determines the feasibility and the boundaries of completeness for the verification effort.

2. Formal Modeling Methods for Concurrent Memory Safety
2.1 Abstract State Machine Modeling for Shared Resource Access Constraints

The shared memory in concurrent programs can be viewed as a collection of shared resources
accessed competitively by multiple threads. To systematically analyze its access constraints, abstract
state machines provide an effective modeling framework. This framework abstracts the global program
state into finite or recursively enumerable configurations. Each configuration includes the abstract
values of the shared memory, the program counters of individual threads, and the states of
synchronization objects used to coordinate access. State transitions are triggered by the atomic
operations of each thread. These operations are defined as transformation functions on the abstract state,
precisely capturing the semantics of behaviors such as reading, writing, allocation, deallocation, and
lock acquisition and release!®!.

Introducing the constraints of synchronization primitives and weak memory models is key to
enhancing the precision of the model. Synchronization mechanisms such as locks and semaphores are
modeled as special resources within the state machine. Their acquisition and release operations follow
specific protocols, thereby enforcing ordering constraints within state transitions. For weak memory
models, the abstract state machine must be extended to incorporate intermediate states such as store
buffers and memory order labels. This enables the state transition relation to simulate the visibility
delays and reordering of operations that occur in actual hardware or runtime environments. Through
this modeling approach, complex concurrent interactions are reduced to analyzable paths within the
state space, providing a well-defined subject for subsequent searches or reasoning when verifying
memory safety properties.

2.2 Logical Expression of Concurrent Execution Traces and Memory Safety Properties

A single concurrent execution of a program can be represented as an event trace, which records
memory operation events from different threads and their arrangement according to a global timeline or
partial order relationship. Formal modeling requires transforming such traces into objects operable by
logical formulas. Atomic propositions in linear temporal logic or computation tree logic can be defined
as assertions about the state at specific positions within a trace, such as "pointer p is valid here" or
"address a is locked by thread t." By quantifying over events in the trace, patterns of
concurrency-related defects such as data races and atomicity violations can be precisely described.

Memory safety properties are expressed within this framework as constraints on all possible
execution traces. Spatial safety properties are typically formulated as global invariants, requiring that at
any point in any trace, all active pointer references must point to valid and type-matching memory
regions. Temporal safety properties, on the other hand, are often expressed as response specifications,
ensuring that once a memory address is deallocated, no future point in that trace will contain an access
to it. For complex patterns involving the dynamic transfer of resources, it is necessary to combine
predicate logic to explicitly encode the ownership transfer relationships of resources within the trace,
thereby linking memory safety to the correctness of resource management protocols!®l.

2.3 Resource Specification Framework for Concurrent Programs Based on Separation Logic

Separation logic provides a natural foundation for describing and reasoning about a program's
exclusive access to memory resources by introducing the spatial separation operator and the concept of
resource holding. Its core idea is to describe the global heap memory as a separating conjunction of
multiple independent sub-heaps, where ownership of each sub-heap's resources can be allocated to a
specific thread or module. In a concurrent context, separation logic is extended into concurrent
separation logic. Its core rules allow parallel executing threads to reason independently about their



respective portions of resources, provided the resources they operate on are logically separate. This
provides a theoretical basis for modular verification.

To construct a resource specification framework applicable to concurrent memory safety, it is
necessary to embed the characterization of sharing and transfer into standard separation logic. The
concept of permissions is introduced to distinguish between read-only access and exclusive write
access permissions to memory regions. Synchronization operations, such as the passage of a lock, are
modeled as the temporary centralization and subsequent re-distribution of resource bundles. The
inference rules of this framework formally stipulate how permissions split, transfer, and merge as
threads are created, interact, and are destroyed. In this way, complex memory safety protocols, such as
memory management in read-write locks or the publish-subscribe pattern, can be abstracted into a
series of specifications for resource state transitions. Consequently, the verification of concurrent
memory safety is transformed into proving the consistency of resource specifications.

3. Construction of the Memory Safety Model and Verification Algorithms
3.1 Construction and Refinement Strategies for Safety Model Invariants

The construction of safety model invariants aims to capture global properties that a program must
satisfy in any intermediate state of its concurrent execution. It serves as the core bridge connecting the
concrete program with its abstract safety specification. The initial form of an invariant can be derived
from synchronization operations in the source code (such as lock declarations and usage) and the
calling patterns of memory management APIs, forming a preliminary set of assertions concerning
resource ownership and access permissions. For concurrent programs, the key challenge lies in
constructing invariants that can withstand all possible thread interleavings. This typically requires
introducing auxiliary variables or ghost states to encode historical interaction information or causal
dependencies among threads, thereby making implicit protocols explicit. The construction process
often integrates program analysis techniques, such as deriving loop invariants for loop structures or
inductively reasoning about shape properties for recursive data structurest!.

The refinement strategy enhances the strength and applicability of invariants through an iterative
process. Counterexample-guided refinement serves as the primary technical approach. When a verifier
discovers an execution path that violates the current invariant, the path information is used to
synthesize new constraint conditions to exclude such invalid interleavings. This process may involve
the refinement of predicate abstraction, where new predicates are extracted from concrete
counterexamples and added to the abstract domain. It may also involve the discovery of interference
constraints, which explicitly mandate that certain operations must follow a specific order to prevent
data races. The endpoint of refinement is to obtain a set of invariants that are both tractable for the
verification tools and sufficiently strong to imply all targeted memory safety properties. More advanced
strategies incorporate interpolation-based refinement, which can automatically derive suitable new
predicates from infeasible paths, thereby accelerating the convergence process.

3.2 Symbolic Execution and Abstract Interpretation Algorithms for Model Verification

Symbolic execution systematically explores the state space by symbolizing program inputs and
initial shared memory values, collecting path conditions along possible execution paths and
symbolically updating memory states. In a concurrent environment, this is extended to concurrent
symbolic execution, which requires managing multiple parallel symbolic execution contexts and their
interactions. The algorithm dynamically schedules the interleaving of symbolic instructions from
different threads and utilizes a constraint solver to determine the satisfiability of various path
conditions, aiming to discover whether certain combinations of thread interleavings and input values
could lead to memory safety violations. The primary challenges lie in path explosion and complex
constraint solving. The symbolic modeling of shared memory needs to efficiently handle constraints
related to pointer aliasing and array bounds. Optimization methods include introducing partial order
reduction techniques to eliminate redundant interleavings and developing efficient solving strategies
tailored for specific theories (such as bit-vectors and arrays)©.

Abstract interpretation provides an algorithmic framework for performing finite over-approximation
of the state space while guaranteeing soundness. It defines an abstract domain to represent sets of
memory states and designs abstract transfer functions on this domain to simulate the effects of program
operations. For concurrent memory safety, the abstract domain must be capable of compactly



representing pointer validity ranges, lock holding statuses, and potential interferences between threads.
The abstract interpretation algorithm computes the fixpoint of abstract states at program points
iteratively, with all possible runtime states being covered by this fixpoint. By designing abstract
domains with sufficient expressive power that also satisfy convergence conditions (such as domains
based on separation logic or extensions of region logic), this algorithm can automatically derive
memory safety invariants or prove the absence of violations. To handle complex data structures,
numerical abstract domains (such as intervals or octagons) are often combined with pointer analysis
domains to simultaneously reason about memory layout and data value constraints.

3.3 Component-Based Design Principles for an Extensible Verification Framework

The component-based design of an extensible verification framework emphasizes the clear
separation of different logical and functional layers within the verification system. Its fundamental
principles include the modularization of the specification language layer, the modeling transformation
layer, the core verification algorithm layer, and the result feedback layer. The specification language
layer provides a declarative syntax for expressing memory safety properties and program contracts. The
modeling transformation layer is responsible for automatically translating source code and
specifications into the formal model required by the underlying verifier, a process that must preserve
semantic consistency. The core verification algorithm layer encapsulates pluggable verification
technologies, such as symbolic execution engines or abstract interpreters. Data exchange between these
layers occurs through well-defined interfaces. This layered architecture enables technological
advancements or replacements within any single layer to proceed independently without necessitating a
complete system redesign.

To support the verification of large-scale complex systems, the framework must adopt design
principles of composability and reusability. Composability allows for the separate verification of
individual program modules or threads, after which these local proofs can be combined using reasoning
rules based on contracts or contextual assumptions to obtain global guarantees. Reusability is
manifested in the construction of shared abstraction libraries, specification pattern libraries, and
specialized verification strategy packages for specific domains (such as custom memory allocators or
concurrent data structures). The framework's design must also reserve extension points for integrating
new memory models, synchronization primitives, or security properties. This is typically achieved by
defining a universal intermediate representation or verification condition generation interface, thereby
ensuring long-term applicability amid technological evolution. The loosely coupled design among
components supports flexible customization and experimentation of the verification workflow,
providing targeted solutions for verification tasks across different application scenarios.

Conclusion

This study systematically elaborates a complete technical system for constructing a
formal-verification-based memory safety model for concurrent programs, covering the entire chain
from theoretical foundations and modeling methods to verification algorithms and framework design.
By providing formal definitions and classifications of memory safety properties, along with precise
semantic characterizations of concurrent computational models, the research establishes a rigorous
logical starting point for subsequent modeling. The proposed abstract state machine modeling, logical
expression of execution traces, and resource specification framework based on separation logic offer
modular and composable descriptive tools for complex concurrent memory interactions. At the
verification level, the exploration of invariant construction and refinement strategies, as well as
symbolic execution and abstract interpretation algorithms, provides core algorithmic support for
automated and semi-automated verification. Finally, the component-based framework design principles
ensure the adaptability and extensibility of the entire verification system. Future research directions
include: exploring more efficient algorithms for the automatic synthesis and refinement of invariants to
reduce the verification burden; investigating verification methods for memory safety under emerging
heterogeneous concurrent architectures (such as GPUs and asynchronous memory models); developing
richer, more declarative domain-specific specification languages to improve engineers' productivity;
and promoting the deep integration of verification tools with mainstream development environments to
enhance the breadth and practicality of formal methods in industrial-grade complex systems.



References

[1] Xie, Xiaofu, Zeng, Mengqi, and Pang, Fei. "Design of a Formal Verification Method for Computer
Concurrent Programs." Information Security and Communications Privacy, no. 03, 2022, pp. 54-62.
[2] Yang, Yeqian, and Dai, Hongjun. "Formal Verification of the RISC-V SBI Firmware Secure Boot
Process." Journal of Computer Research and Development, pp. 1-14.

[3] Li, Yushan. Formal Modeling and Verification of Microkernel Scheduler Programs. MA thesis.
University of Electronic Science and Technology of China, 2025.

[4] Wang, Junyi. Formal Modeling and Verification of Complex Data Structures. MA thesis. Anhui
University, 2023.

[5] Xing, Liang, et al. "Formal Verification Technology for Safety-Critical Software Based on
PROMELA Models." Journal of Northwestern Polytechnical University, vol. 40, no. 05, 2022, pp.
1180-1187.

[6] Xie, Xiaofu, Zeng, Mengqi, and Pang, Fei. "Design of a Formal Verification Method for Computer
Concurrent Programs." Information Security and Communications Privacy, no. 03, 2022, pp. 54-62.



