
Construction of a Memory Safety Model for 
Concurrent Programs Based on Formal Verification 

Hao Su* 

Hainan Vocational University of Science and Technology, Haikou, 571126, China 
*Corresponding author: suhao2580@126.com 

Abstract: As multi-core processors become the mainstream in computing, the memory safety issues of 
concurrent programs have grown increasingly severe due to their nondeterministic interactions. 
Formal verification, which provides rigorous guarantees for program correctness through 
mathematical methods, serves as a key approach to addressing this challenge. This paper aims to 
systematically construct a memory safety model for concurrent programs based on formal verification. 
The research first clarifies the formal definitions of spatial and temporal safety in concurrent 
environments and precisely characterizes shared memory interactions based on interleaving semantics 
and operational semantics. Subsequently, a modeling approach oriented toward concurrent memory 
safety is proposed, including abstract state machine modeling, logical representation of execution 
traces, and an extended separation logic resource specification framework. Finally, the study 
investigates automatic construction and refinement strategies for model invariants, explores 
verification algorithms such as symbolic execution and abstract interpretation, and designs a modular, 
extensible verification framework. This research provides a comprehensive technical pathway from 
theory to methodology for the systematic verification of concurrent memory safety. 

Keywords: Formal Verification; Concurrent Programs; Memory Safety; Separation Logic; Model 
Construction; Symbolic Execution; Abstract Interpretation 

Introduction 

Against the backdrop of the ever-increasing complexity of software systems, concurrent 
programming has emerged as a crucial technology for achieving high performance and responsiveness. 
However, concurrent access to shared memory introduces issues such as data races, atomicity 
violations, and order violations. These interaction defects can directly lead to subtle yet critical memory 
safety violations, including buffer overflows and dangling pointer dereferences, which pose significant 
threats to system reliability and security. Due to the highly non-deterministic and scenario-dependent 
nature of concurrency errors, traditional methods like dynamic testing and code review possess inherent 
limitations and struggle to exhaust all possible thread interleavings. Consequently, advancing formal 
verification techniques capable of providing rigorous mathematical proofs of program correctness 
holds urgent research significance and necessity for constructing high-assurance concurrent systems. 
The research presented in this paper precisely focuses on how to systematically construct a formal 
verification model tailored for the memory safety properties of concurrent programs. This model must 
not only provide a precise description of complex memory safety properties—encompassing both 
spatial and temporal dimensions—and their variations within the concurrent context but also establish a 
complete methodological framework. This framework spans from program semantic characterization 
and formal specification to automated verification algorithms, aiming to address core challenges such 
as state space explosion and verification complexity. Ultimately, it seeks to lay a solid theoretical 
foundation and provide a feasible technical solution for achieving reliable guarantees of memory safety 
in concurrent programs. 

1. Formal Theoretical Foundations for Memory Safety in Concurrent Programs 

1.1 Formal Definition and Classification of Memory Safety Properties 

The core of memory safety properties lies in ensuring that every memory access performed by a 
program occurs within its permitted range and that the type of access conforms to the semantics defined 



for that memory region. Formal methods employ precise mathematical language to characterize these 
properties, typically decomposing memory safety into two orthogonal dimensions: spatial safety and 
temporal safety. Spatial safety concerns the validity of pointer references, ensuring that pointer 
dereference operations do not exceed bounds or access unallocated memory units. Temporal safety 
pertains to the lifecycle of memory objects, prohibiting access to memory regions that have already 
been freed, thereby eliminating dangling pointer dereferences. These two categories of properties can 
be formally expressed using rules from predicate logic or type systems, such as employing assertions in 
separation logic to describe exclusive ownership of memory regions, or encoding memory addresses 
and lifecycle markers within types. 

A systematic classification of memory safety properties serves as the prerequisite for constructing 
targeted verification models. The fundamental classification can be conducted based on the severity of 
violation consequences and the timing of detection. For instance, memory leaks, buffer overflows, and 
double frees can be categorized as observable runtime errors. A deeper level of classification 
distinguishes properties based on their degree of coupling with concurrent interactions, separating 
so-called "concurrent memory safety" properties—those that hold in single-threaded environments but 
may be violated under interleaved concurrent execution. The formalization of such properties requires 
additional consideration of consistency constraints governing the transfer and evolution of memory 
states across multiple execution threads, thereby laying the groundwork for subsequent 
concurrency-specific modeling[1]. 

1.2 Semantic Characterization of Concurrent Computation Models and Shared Memory Interactions 

The behavioral complexity of concurrent programs stems from their underlying computational 
models' support for parallel, interleaved, or truly concurrent execution. Formal semantics provide a 
precise mathematical foundation for understanding the interaction between concurrent programs and 
shared memory. Interleaving semantics models concurrent execution as arbitrary linear interleavings of 
atomic operations from multiple threads along a global timeline. While this model simplifies analysis, 
it may fail to capture all permissible behaviors under weak hardware memory models. More refined 
semantic models employ event structures or operational semantics to explicitly describe the partial 
order relationships between memory operations (reads, writes, updates), as well as the constraints 
imposed by memory barriers and synchronization primitives on the visibility and ordering of these 
operations. 

The semantic characterization of shared memory interactions must precisely reflect the 
nondeterministic evolution of states. This is typically achieved through labeled transition systems, 
where each state encapsulates a snapshot of the global shared memory along with the local states of 
individual threads. The transition relation defines how a single thread’s memory operations alter the 
global state and may trigger changes in the state observed by other threads. For semantic 
characterization of weak memory models (such as x86-TSO and ARMv8), it is further necessary to 
introduce architectural details like store buffers and memory order rules, formally defining the core 
issue of "when a write becomes visible to a read." This precise semantics serves as the sole basis for 
subsequently determining whether a specific execution trace satisfies memory safety properties. 

1.3 Correspondence Between Formal Verification Methods and Memory Safety Specifications 

Formal verification aims to mathematically prove that a target system satisfies its formal 
specifications. Verification methods targeting memory safety are primarily divided into two categories: 
model checking based on automated reasoning, and theorem proving based on interactive proof. Model 
checking systematically explores all possible concurrent execution paths of a program through state 
space search or symbolic execution to determine whether any path exists that violates a given memory 
safety specification[2]. The corresponding specifications are typically expressed as formulas in linear 
temporal logic or computation tree logic, describing safety properties such as "never accessing an 
illegal address." Theorem proving methods, on the other hand, encode both the program and its desired 
safety properties within a higher-order logic system (such as Coq or Isabelle/HOL), establishing their 
correctness through the construction of formal proofs. 

The selection and construction of appropriate verification methods directly depend on the form of 
expression and the complexity of the memory safety specifications. For complex specifications 
articulated using resource logics such as separation logic, their verification often necessitates the 
integration of specialized program logic reasoning systems. These systems embed rules governing the 



transfer of memory resources and their permissions within their inference rules, enabling the natural 
derivation of resource transfers and synchronization operations between threads. Refinement and 
abstraction techniques bridge the gap between these methods by constructing abstract models of the 
program (for instance, ignoring specific data values and focusing only on pointer aliasing relationships 
and lock states) to reduce verification complexity, while ensuring that verification conclusions drawn 
on this abstract model can be concretely reasoned back to the original program. This correspondence 
determines the feasibility and the boundaries of completeness for the verification effort. 

2. Formal Modeling Methods for Concurrent Memory Safety 

2.1 Abstract State Machine Modeling for Shared Resource Access Constraints 

The shared memory in concurrent programs can be viewed as a collection of shared resources 
accessed competitively by multiple threads. To systematically analyze its access constraints, abstract 
state machines provide an effective modeling framework. This framework abstracts the global program 
state into finite or recursively enumerable configurations. Each configuration includes the abstract 
values of the shared memory, the program counters of individual threads, and the states of 
synchronization objects used to coordinate access. State transitions are triggered by the atomic 
operations of each thread. These operations are defined as transformation functions on the abstract state, 
precisely capturing the semantics of behaviors such as reading, writing, allocation, deallocation, and 
lock acquisition and release[3]. 

Introducing the constraints of synchronization primitives and weak memory models is key to 
enhancing the precision of the model. Synchronization mechanisms such as locks and semaphores are 
modeled as special resources within the state machine. Their acquisition and release operations follow 
specific protocols, thereby enforcing ordering constraints within state transitions. For weak memory 
models, the abstract state machine must be extended to incorporate intermediate states such as store 
buffers and memory order labels. This enables the state transition relation to simulate the visibility 
delays and reordering of operations that occur in actual hardware or runtime environments. Through 
this modeling approach, complex concurrent interactions are reduced to analyzable paths within the 
state space, providing a well-defined subject for subsequent searches or reasoning when verifying 
memory safety properties. 

2.2 Logical Expression of Concurrent Execution Traces and Memory Safety Properties 

A single concurrent execution of a program can be represented as an event trace, which records 
memory operation events from different threads and their arrangement according to a global timeline or 
partial order relationship. Formal modeling requires transforming such traces into objects operable by 
logical formulas. Atomic propositions in linear temporal logic or computation tree logic can be defined 
as assertions about the state at specific positions within a trace, such as "pointer p is valid here" or 
"address a is locked by thread t." By quantifying over events in the trace, patterns of 
concurrency-related defects such as data races and atomicity violations can be precisely described. 

Memory safety properties are expressed within this framework as constraints on all possible 
execution traces. Spatial safety properties are typically formulated as global invariants, requiring that at 
any point in any trace, all active pointer references must point to valid and type-matching memory 
regions. Temporal safety properties, on the other hand, are often expressed as response specifications, 
ensuring that once a memory address is deallocated, no future point in that trace will contain an access 
to it. For complex patterns involving the dynamic transfer of resources, it is necessary to combine 
predicate logic to explicitly encode the ownership transfer relationships of resources within the trace, 
thereby linking memory safety to the correctness of resource management protocols[4]. 

2.3 Resource Specification Framework for Concurrent Programs Based on Separation Logic 

Separation logic provides a natural foundation for describing and reasoning about a program's 
exclusive access to memory resources by introducing the spatial separation operator and the concept of 
resource holding. Its core idea is to describe the global heap memory as a separating conjunction of 
multiple independent sub-heaps, where ownership of each sub-heap's resources can be allocated to a 
specific thread or module. In a concurrent context, separation logic is extended into concurrent 
separation logic. Its core rules allow parallel executing threads to reason independently about their 



respective portions of resources, provided the resources they operate on are logically separate. This 
provides a theoretical basis for modular verification. 

To construct a resource specification framework applicable to concurrent memory safety, it is 
necessary to embed the characterization of sharing and transfer into standard separation logic. The 
concept of permissions is introduced to distinguish between read-only access and exclusive write 
access permissions to memory regions. Synchronization operations, such as the passage of a lock, are 
modeled as the temporary centralization and subsequent re-distribution of resource bundles. The 
inference rules of this framework formally stipulate how permissions split, transfer, and merge as 
threads are created, interact, and are destroyed. In this way, complex memory safety protocols, such as 
memory management in read-write locks or the publish-subscribe pattern, can be abstracted into a 
series of specifications for resource state transitions. Consequently, the verification of concurrent 
memory safety is transformed into proving the consistency of resource specifications. 

3. Construction of the Memory Safety Model and Verification Algorithms 

3.1 Construction and Refinement Strategies for Safety Model Invariants 

The construction of safety model invariants aims to capture global properties that a program must 
satisfy in any intermediate state of its concurrent execution. It serves as the core bridge connecting the 
concrete program with its abstract safety specification. The initial form of an invariant can be derived 
from synchronization operations in the source code (such as lock declarations and usage) and the 
calling patterns of memory management APIs, forming a preliminary set of assertions concerning 
resource ownership and access permissions. For concurrent programs, the key challenge lies in 
constructing invariants that can withstand all possible thread interleavings. This typically requires 
introducing auxiliary variables or ghost states to encode historical interaction information or causal 
dependencies among threads, thereby making implicit protocols explicit. The construction process 
often integrates program analysis techniques, such as deriving loop invariants for loop structures or 
inductively reasoning about shape properties for recursive data structures[5]. 

The refinement strategy enhances the strength and applicability of invariants through an iterative 
process. Counterexample-guided refinement serves as the primary technical approach. When a verifier 
discovers an execution path that violates the current invariant, the path information is used to 
synthesize new constraint conditions to exclude such invalid interleavings. This process may involve 
the refinement of predicate abstraction, where new predicates are extracted from concrete 
counterexamples and added to the abstract domain. It may also involve the discovery of interference 
constraints, which explicitly mandate that certain operations must follow a specific order to prevent 
data races. The endpoint of refinement is to obtain a set of invariants that are both tractable for the 
verification tools and sufficiently strong to imply all targeted memory safety properties. More advanced 
strategies incorporate interpolation-based refinement, which can automatically derive suitable new 
predicates from infeasible paths, thereby accelerating the convergence process. 

3.2 Symbolic Execution and Abstract Interpretation Algorithms for Model Verification 

Symbolic execution systematically explores the state space by symbolizing program inputs and 
initial shared memory values, collecting path conditions along possible execution paths and 
symbolically updating memory states. In a concurrent environment, this is extended to concurrent 
symbolic execution, which requires managing multiple parallel symbolic execution contexts and their 
interactions. The algorithm dynamically schedules the interleaving of symbolic instructions from 
different threads and utilizes a constraint solver to determine the satisfiability of various path 
conditions, aiming to discover whether certain combinations of thread interleavings and input values 
could lead to memory safety violations. The primary challenges lie in path explosion and complex 
constraint solving. The symbolic modeling of shared memory needs to efficiently handle constraints 
related to pointer aliasing and array bounds. Optimization methods include introducing partial order 
reduction techniques to eliminate redundant interleavings and developing efficient solving strategies 
tailored for specific theories (such as bit-vectors and arrays)[6]. 

Abstract interpretation provides an algorithmic framework for performing finite over-approximation 
of the state space while guaranteeing soundness. It defines an abstract domain to represent sets of 
memory states and designs abstract transfer functions on this domain to simulate the effects of program 
operations. For concurrent memory safety, the abstract domain must be capable of compactly 



representing pointer validity ranges, lock holding statuses, and potential interferences between threads. 
The abstract interpretation algorithm computes the fixpoint of abstract states at program points 
iteratively, with all possible runtime states being covered by this fixpoint. By designing abstract 
domains with sufficient expressive power that also satisfy convergence conditions (such as domains 
based on separation logic or extensions of region logic), this algorithm can automatically derive 
memory safety invariants or prove the absence of violations. To handle complex data structures, 
numerical abstract domains (such as intervals or octagons) are often combined with pointer analysis 
domains to simultaneously reason about memory layout and data value constraints. 

3.3 Component-Based Design Principles for an Extensible Verification Framework 

The component-based design of an extensible verification framework emphasizes the clear 
separation of different logical and functional layers within the verification system. Its fundamental 
principles include the modularization of the specification language layer, the modeling transformation 
layer, the core verification algorithm layer, and the result feedback layer. The specification language 
layer provides a declarative syntax for expressing memory safety properties and program contracts. The 
modeling transformation layer is responsible for automatically translating source code and 
specifications into the formal model required by the underlying verifier, a process that must preserve 
semantic consistency. The core verification algorithm layer encapsulates pluggable verification 
technologies, such as symbolic execution engines or abstract interpreters. Data exchange between these 
layers occurs through well-defined interfaces. This layered architecture enables technological 
advancements or replacements within any single layer to proceed independently without necessitating a 
complete system redesign. 

To support the verification of large-scale complex systems, the framework must adopt design 
principles of composability and reusability. Composability allows for the separate verification of 
individual program modules or threads, after which these local proofs can be combined using reasoning 
rules based on contracts or contextual assumptions to obtain global guarantees. Reusability is 
manifested in the construction of shared abstraction libraries, specification pattern libraries, and 
specialized verification strategy packages for specific domains (such as custom memory allocators or 
concurrent data structures). The framework's design must also reserve extension points for integrating 
new memory models, synchronization primitives, or security properties. This is typically achieved by 
defining a universal intermediate representation or verification condition generation interface, thereby 
ensuring long-term applicability amid technological evolution. The loosely coupled design among 
components supports flexible customization and experimentation of the verification workflow, 
providing targeted solutions for verification tasks across different application scenarios. 

Conclusion 

This study systematically elaborates a complete technical system for constructing a 
formal-verification-based memory safety model for concurrent programs, covering the entire chain 
from theoretical foundations and modeling methods to verification algorithms and framework design. 
By providing formal definitions and classifications of memory safety properties, along with precise 
semantic characterizations of concurrent computational models, the research establishes a rigorous 
logical starting point for subsequent modeling. The proposed abstract state machine modeling, logical 
expression of execution traces, and resource specification framework based on separation logic offer 
modular and composable descriptive tools for complex concurrent memory interactions. At the 
verification level, the exploration of invariant construction and refinement strategies, as well as 
symbolic execution and abstract interpretation algorithms, provides core algorithmic support for 
automated and semi-automated verification. Finally, the component-based framework design principles 
ensure the adaptability and extensibility of the entire verification system. Future research directions 
include: exploring more efficient algorithms for the automatic synthesis and refinement of invariants to 
reduce the verification burden; investigating verification methods for memory safety under emerging 
heterogeneous concurrent architectures (such as GPUs and asynchronous memory models); developing 
richer, more declarative domain-specific specification languages to improve engineers' productivity; 
and promoting the deep integration of verification tools with mainstream development environments to 
enhance the breadth and practicality of formal methods in industrial-grade complex systems. 



References 

[1] Xie, Xiaofu, Zeng, Mengqi, and Pang, Fei. "Design of a Formal Verification Method for Computer 
Concurrent Programs." Information Security and Communications Privacy, no. 03, 2022, pp. 54-62. 
[2] Yang, Yeqian, and Dai, Hongjun. "Formal Verification of the RISC-V SBI Firmware Secure Boot 
Process." Journal of Computer Research and Development, pp. 1-14. 
[3] Li, Yushan. Formal Modeling and Verification of Microkernel Scheduler Programs. MA thesis. 
University of Electronic Science and Technology of China, 2025. 
[4] Wang, Junyi. Formal Modeling and Verification of Complex Data Structures. MA thesis. Anhui 
University, 2023. 
[5] Xing, Liang, et al. "Formal Verification Technology for Safety-Critical Software Based on 
PROMELA Models." Journal of Northwestern Polytechnical University, vol. 40, no. 05, 2022, pp. 
1180-1187. 
[6] Xie, Xiaofu, Zeng, Mengqi, and Pang, Fei. "Design of a Formal Verification Method for Computer 
Concurrent Programs." Information Security and Communications Privacy, no. 03, 2022, pp. 54-62. 


