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Abstract: The complex history-dependent behavior exhibited by viscoelastic polymeric materials,
known as the memory effect, has long posed a challenge for the accurate prediction of their mechanical
properties. Classical linear viscoelasticity theory has inherent theoretical limitations in describing such
non-local and cross-scale characteristics. Fractional calculus operators, due to their intrinsic
non-locality and hereditary properties, provide a more physically consistent framework for the
mathematical description of memory effects. This paper systematically elaborates on the extension of
this theory in related modeling. First, it analyzes the physical mechanisms of memory effects and the
shortcomings of classical models, establishing the physical significance of fractional operators.
Subsequently, a generalized fractional constitutive model is constructed, revealing the cross-scale
evolution characteristics of the Mittag-Leffler-type memory kernel, and extending the description to
multi-field coupling and non-linear theories. Finally, the strategies for physical identification of model
parameters, numerical implementation approaches, and current frontier challenges are discussed.
Research indicates that fractional calculus theory can effectively and uniformly describe the memory
behavior of polymeric materials from microscopic motion to macroscopic response through continuous
relaxation spectrum characterization and flexible memory weight assignment, laying a significant
foundation for the development of a new generation of viscoelastic constitutive theories.
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Introduction

The mechanical behavior of viscoelastic polymeric materials is strongly dependent on their loading
and deformation history. This memory effect is rooted in the complex relaxation processes of molecular
segments within the material. Although classical integral constitutive relations based on the Boltzmann
superposition principle can initially describe linear memory behavior, their discrete relaxation spectrum
representation and limited capacity to describe nonlinear and multi-field coupling effects constrain their
predictive capability and physical depth under complex conditions. Therefore, developing a constitutive
theory that closely links microscopic physical mechanisms while accurately characterizing macroscopic
non-local and cross-scale memory behavior has become an important need in this field. Fractional
calculus theory extends the order of differentiation and integration from integers to arbitrary real
numbers. The non-locality of its operators naturally aligns with the history-dependent nature of
memory effects, providing a powerful mathematical tool for constructing such constitutive relations.
This study aims to systematically extend the application of fractional calculus theory in modeling the
memory effects of viscoelastic polymeric materials. By constructing a generalized fractional model
with clear physical meaning, analyzing its memory evolution laws, and exploring its descriptive
framework under complex environments, it seeks to deepen the understanding of the time-dependent
mechanical behavior of materials and promote the development of related mechanical modeling
theories.



1. Theoretical Foundation and Mathematical Characterization of Memory Effects in Viscoelastic
Polymeric Materials

1.1 Physical Mechanism of Viscoelasticity and Memory Effects in Polymeric Materials

Viscoelastic polymeric materials exhibit mechanical behaviors that combine the solid-like
characteristics of elasticity with the fluid-like characteristics of viscosity. This dual nature originates
from their unique molecular structure and motion patterns. The internal structure of these materials
consists of long-chain molecules entangled with one another, and the motion of chain segments
involves broad-spectrum relaxation processes ranging from local side-group rotation to the reptation of
entire molecular chains. Under external forces, these chain segments must overcome energy barriers to
rearrange and adapt to new conformations. This process is accompanied by energy storage and
dissipation, which macroscopically manifest as nonlinear time-dependent responses such as stress
relaxation, creep, and hysteresis. The current state of the material depends not only on the
instantaneous load but is also profoundly influenced by the entire load history. This historical
dependence forms the physical core of the memory effect.

The memory effect, in essence, reflects the non-local response capability of a polymer system to
past stimuli. The evolution of a molecular chain from one conformational state to another requires time,
and its evolutionary path depends on the initial state and the thermodynamic processes it has undergone.
This path dependency means the material can "remember" its previous stress or strain history and
subsequently release or superimpose its influence in its response. Therefore, the memory effect
transcends simple instantaneous cause-and-effect relationships, embodying the complex, distributed
energy storage and transfer mechanisms within polymeric materials. It serves as a crucial bridge
connecting their microscopic molecular motion to macroscopic mechanical properties.

1.2 Description of Memory Effects by Classical Integral Constitutive Relations and Their
Limitations

The linear viscoelasticity theory based on the Boltzmann superposition principle provides a
classical framework for the mathematical description of memory effects. By introducing relaxation
modulus or creep compliance functions, this theory expresses the stress or strain at the current moment
as a convolution integral of the entire history of strain or stress changes. The integral kernel functions,
namely the relaxation or creep functions, serve here as memory weights, quantifying the contribution of
stimuli at each past moment to the current response. This type of integral constitutive relation possesses
clear physical meaning and mathematical simplicity when describing linear memory effects under
small deformations, successfully establishing a direct link between material functions and memory
effects[1].

However, classical integral constitutive models reveal theoretical limitations when dealing with the
complex memory behavior of practical polymeric materials. Their linear superposition assumption
struggles to accurately capture nonlinear memory effects under large deformations or complex loading
paths. These models typically rely on specific functional forms (such as the sum of exponentials in the
generalized Maxwell model) fitted from experimental data. Such functions often correspond to discrete
relaxation time spectra, making it difficult to naturally represent the inherent continuous relaxation
spectrum characteristics of polymers. More importantly, the description of memory effects in this class
of models is "formalistic." Their memory kernel functions lack a direct physical mapping to the
complex internal dynamical processes of the material (such as cooperative segmental motion and
multi-scale coupling), which may lead to failure when predicting the long-term memory behavior of
novel materials or under extreme conditions.

1.3 Basic Operators of Fractional Calculus and Their Physical Significance

Fractional calculus represents a natural extension of integer-order differential and integral operators
to arbitrary orders. Its core operators primarily include the Riemann-Liouville definition and the
Caputo definition. The Riemann-Liouville fractional derivative is defined by performing integer-order
differentiation on a function followed by fractional-order integration, while the Caputo derivative
reverses this sequence, giving it a clearer form for physical problems involving initial conditions. These
two definitions are interrelated through specific transformations and both can reduce to the classical
integer-order case. The non-locality of fractional differential and integral operators is their most
fundamental mathematical characteristic, meaning the result of the operation depends on the historical



information of the function over the entire domain interval.

This non-locality provides an ideal mathematical tool for precisely characterizing the memory
effects of viscoelastic materials. Integer-order derivatives only reflect the local rate of change of a
function within an infinitesimal region, whereas fractional-order derivatives perform a weighted
summation of the function's historical evolution through an integral kernel featuring power-law decay.
This weighting method highly aligns in mathematical form with the physical phenomenon observed in
polymeric materials where the relaxation modulus decays according to a power law over time (as
revealed by principles such as time-temperature superposition). Consequently, the order of the
fractional operator can be regarded as an intrinsic parameter characterizing the material's "memory
strength" or "degree of non-locality." A lower order indicates a slower decay of historical influence and
a more persistent "memory" of the material, thereby opening new pathways for unified modeling from
the level of molecular motion to macroscopic mechanical behavior.

2. Extension of the Fractional-Order Theoretical Framework for Modeling Memory Effects

2.1 Principles for Constructing Generalized Fractional-Order Constitutive Models

The core principle for constructing generalized fractional-order constitutive models lies in
systematically replacing the integer-order time derivative operators in classical constitutive relations
with fractional-order differential operators, guided by physical mechanisms. This substitution is not
merely a mathematical formal transformation; it is based on the inherent non-locality of fractional
operators, which can more fundamentally capture the hereditary and memory characteristics of polymer
chain segment motion. By introducing fractional-order stress and strain derivatives, models such as the
fractional Maxwell model, the fractional Kelvin-Voigt model, and their generalized combinations can
be constructed. Their constitutive equations manifest as fractional differential equations in the time
domain and correspond to complex modulus expressions with fractional power-law characteristics in
the complex frequency domain. The fractional order within the model establishes a direct correlation
with the material's intrinsic relaxation time distribution spectrum. A non-integer differential order
essentially corresponds to a continuous relaxation spectrum distribution with power-law features,
thereby overcoming the limitation of classical models that rely on fitting discrete exponential series.

This construction principle is further reflected in the unified description of multi-level relaxation
mechanisms. The memory effects in polymeric materials span multiple time scales, ranging from the
local motion of chain segments to the disentanglement of entire molecular chains. Models employing a
single fractional order may be insufficient to cover the entire relaxation spectrum. Consequently,
fractional-element ladder models based on multiple fractional derivatives, or distributed-order
fractional differential equations, have been developed. In these extended models, different fractional
elements or operators of different orders respectively characterize relaxation processes at distinct time
scales or governed by different physical mechanisms. The integrated modeling of the entire broadband
memory behavior is achieved through parallel or series configurations. This modular construction
method enhances the structural flexibility of the models and their characterization capability for
complex material systems[2].

2.2 Evolution and Response Characteristics of Fractional-Order Memory Kernel Functions

The memory kernel function corresponding to the fractional-order constitutive model typically
manifests as the Mittag-Leffler function or its generalized forms, a core special function in fractional
differential equation theory. Compared to classical exponential decay kernel functions, the
Mittag-Leffler function kernel exhibits a unique biphasic decay characteristic: it approximates a
power-law decay in the short-time domain and asymptotically approaches an exponential decay in the
long-time domain. This evolutionary characteristic precisely aligns with the measured relaxation
behavior of many viscoelastic polymeric materials over a broad time range, which combines short-time
rapid relaxation with long-time slow tailing. Consequently, it provides an accurate mathematical tool
for the cross-scale description of memory effects. The fractional order within the kernel function,
together with the parameters of the Mittag-Leffler function, collectively determines the rate and pattern
of decay, offering definitive parameters for quantifying the "persistence" of memory.

Analyzing from the perspective of response characteristics, the fractional-order memory kernel
determines how the material allocates weights to different historical stimuli. Its non-exponential decay
characteristic implies that, compared to classical models, the fractional kernel function does not assign



an exponentially dominant absolute weight to recent history. Instead, it employs a relatively gentle
power-law weighting scheme while still retaining a non-negligible influence from the more distant past.
This weight allocation mechanism enables fractional-order models to more reasonably simulate
phenomena such as the material's hysteresis loops, incomplete recovery during creep recovery, and the
slow decay in the later stages of stress relaxation. Under dynamic loading, the relationship between the
storage modulus and loss modulus derived from the fractional kernel function and frequency exhibits
an approximate power-law plateau across a broad frequency range. This provides a new theoretical
perspective for understanding the material's energy storage and dissipation behavior over wide
frequency domains.

2.3 Fractional-Order Description of Multi-Field Coupling and Nonlinear Memory Effects

In practical service environments, the memory effects of viscoelastic polymeric materials often
exhibit strong coupling with multiple physical fields such as ambient temperature, humidity, and even
electric or magnetic fields, while the mechanical response itself frequently shows significant
nonlinearity. The extension of the fractional-order theoretical framework to such complex scenarios is
reflected in associating fractional operators with field variables and state variables. For instance, under
temperature field coupling, the fractional order or characteristic time constants within the model can be
expressed as functions of temperature. Drawing on the concept of the time-temperature equivalence
principle, the variation patterns of memory effects across different temperature ranges can be uniformly
described through the temperature dependence of the fractional order. This approach inherently
incorporates the influence of time-varying processes, such as physical aging and chemical aging, on the
material's memory characteristics into the evolution equations of the model parameters.

For nonlinear memory effects, such as amplitude dependence under large strain amplitudes or
modulus softening/hardening induced by loading history, linear fractional-order models require
nonlinear extensions. One approach involves introducing fractional orders that depend on stress or
strain amplitude, constructing variable-order fractional differential constitutive models. This allows the
"strength" of memory or the "width" of the relaxation spectrum to dynamically adjust according to the
current mechanical state. Another, more universal framework involves coupling fractional operators
with nonlinear spring and damping elements in a nonlinear manner, or constructing rate-dependent
hyperelastic-viscoelastic constitutive equations based on fractional calculus. These nonlinear
fractional-order models can characterize the shape evolution of stress-strain hysteresis loops under
cyclic loading, the nonlinear characteristics of loading rate effects, and the memory residue during
recovery that depends on the maximum pre-strain. Thereby, they advance the application boundaries of
fractional-order theory into the domains of strong nonlinearity and large deformation[3].

3. Application Prospects of the Extended Theory and Model Validation Methodology

3.1 Physical Identification and Inversion Strategies for Fractional-Order Model Parameters

The precise identification of parameters in fractional-order constitutive models is a crucial step
linking theoretical extension to the characterization of real material behavior. Model parameters
typically include the fractional differential order, generalized modulus coefficients, and characteristic
times, among which the physical identification of the fractional order holds the most central
significance. This order is not merely a mathematical fitting parameter; its numerical value is
associated with the breadth and symmetry of the material's internal relaxation time distribution. A lower
order often corresponds to a broader relaxation time distribution and more pronounced long-term
memory effects. Data from dynamic mechanical thermal analysis, such as frequency-domain storage
and loss modulus data, or time-domain data obtained from creep and stress relaxation experiments,
provide the foundation for parameter inversion. Utilizing the analytical expressions of fractional-order
models under Laplace or Fourier transforms allows for the establishment of theoretical prediction
formulas for complex modulus or creep compliance.

The parameter inversion process is essentially an optimization problem based on experimental data.
It requires the use of appropriate global optimization algorithms, such as genetic algorithms or particle
swarm optimization, to minimize the error norm between model predictions and experimental data.
This inversion strategy must consider the potential parameter redundancy of the model itself, as well as
differences in the signal-to-noise ratio of experimental data across specific frequency bands or time
periods. Successful parameter identification lies not only in obtaining the optimal fitting curve but,



more importantly, in analyzing the correlation between the inverted parameter set and the material's
known physical characteristics (such as molecular weight distribution, crosslinking density, and
plasticizer content). This analysis aims to endow the fractional-order parameters with a more profound
microstructural interpretation and to verify their validity as intrinsic descriptors of the material.

3.2 Computational Implementation and Numerical Simulation Approaches for the Extended Model

Incorporating fractional constitutive relations into numerical simulation frameworks faces the core
challenge of high computational cost and historical data storage requirements due to the non-local
nature of the operators. A commonly used numerical implementation approach is based on the discrete
definition of the Grünwald-Letnikov fractional derivative. This definition approximates the fractional
derivative as a weighted sum of function values at the current and multiple past time steps. The weight
coefficients are determined by the fractional order and can be efficiently calculated using recursive
relations. While this direct discretization method is conceptually clear, it requires storing the history of
variables throughout the entire solution process, which creates pressure for long-term simulations. To
address this, improved algorithms based on exponential integration or the short memory principle have
been developed. These algorithms truncate the influence of distant history while maintaining a certain
level of accuracy, thereby effectively managing storage demands[4].

Analyzing material behavior under complex boundary conditions and geometric configurations
requires integrating the fractional-order constitutive model into numerical computational frameworks
such as the finite element method. This is typically achieved by introducing a fractional-order
stress-strain update algorithm at the element integration points. Within each time increment, the
algorithm must call upon the stored historical strain sequence to compute the current stress according to
the discretized fractional-order constitutive relation. Developing an efficient and robust fractional-order
finite element program necessitates proper handling of the stability of the time integration scheme,
optimization of historical data access, and interface issues with existing commercial software. This
numerical simulation approach makes it possible to predict the time-dependent mechanical
performance of viscoelastic polymeric components with complex memory effects, providing tools for
virtual design and performance evaluation.

3.3 Frontiers and Challenges in Theoretical Extension

A key frontier for the further extension of fractional-order theory in modeling viscoelastic memory
effects lies in developing a multi-scale fractional framework with deeper physical information
embedding. While current models have achieved success at the macroscopic phenomenological level,
the quantitative mapping relationship between fractional parameters and molecular dynamics
simulations or microstructural evolution has not yet been fully established. Future research needs to
focus on constructing theoretical links to derive fractional operators from microscopic segmental
motion or mesoscopic network models. This would enable parameters such as the fractional order to
directly reflect specific molecular motion modes or entanglement dynamics, thereby realizing a closed
loop for cross-scale prediction.

Another frontier direction involves advanced forms of models for complex systems. These include
variable-order fractional models coupled with multiple physical fields, fractional stochastic differential
equation constitutive relations describing random excitations and non-equilibrium processes, and
data-driven fractional neural network modeling approaches. These extensions aim to capture the
evolution of memory effects arising from environmental interactions, internal fluctuations, and high
nonlinearity. The core challenge faced is that these complex models often involve increased parameter
dimensionality, which may reduce their identifiability and physical interpretability. Simultaneously, the
corresponding mathematical theoretical analysis and numerical solution methods also become more
difficult. Developing a new generation of fractional-order theory that balances physical consistency,
mathematical rigor, and computational feasibility constitutes a fundamental challenge that must be
addressed for the continued advancement of this field.

Conclusion

This paper systematically discusses the research on extending the modeling of memory effects in
viscoelastic polymeric materials using fractional calculus theory. By replacing classical integer-order
derivatives with fractional-order operators, the constructed constitutive models can naturally relate to



the material's internal continuous relaxation time spectrum through the core parameter of the fractional
order. They accurately characterize the memory evolution process from short-term power-law decay to
long-term exponential tailing via the Mittag-Leffler-type kernel function. This framework has been
further extended to the description of multi-physics coupling and nonlinear memory effects. By
introducing strategies such as variable-order or nonlinear coupling, the model's adaptability to actual
complex service environments has been enhanced. The discussion on parameter inversion identification
and numerical implementation methods provides feasible pathways for the verification and application
of the theory. The focus of future research lies in establishing a quantitative theoretical bridge between
fractional-order parameters and microstructural characteristics, developing multi-scale models with
deeper physical information embedding, and addressing challenges such as the identifiability of
high-dimensional complex fractional models, computational efficiency, and mathematical theoretical
foundations. The ultimate goal is to achieve a fundamental leap from phenomenological description to
physical prediction.
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