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Abstract: Achieving real-time, precise, and reliable localization for robots in indoor environments is a 
critical prerequisite for autonomous navigation and the execution of complex tasks. Single sensors are 
often limited by their inherent physical characteristics and susceptibility to environmental interference, 
making it difficult to maintain stable performance in dynamic scenes. To address this issue, this paper 
investigates a real-time precise localization method based on multi-sensor information fusion. By 
systematically analyzing the data characteristics of heterogeneous sensors, including LiDAR, visual 
sensors, inertial measurement units (IMUs), and wheel encoders, the method establishes accurate noise 
models and designs spatiotemporal synchronization and anomaly detection mechanisms, thereby laying 
a solid data foundation for fusion. An adaptive fusion localization model based on state space is 
constructed, and an algorithm that dynamically adjusts sensor weights according to online data quality 
is proposed. Furthermore, multi-scale feature fusion and a robust graph optimization framework are 
employed for pose estimation, enhancing the system's accuracy and fault tolerance. Finally, an 
embedded real-time localization system is designed, which ensures the efficient execution of the 
algorithm from the perspectives of hardware architecture, computational optimization, and resource 
scheduling. Experimental validation demonstrates that this method achieves centimeter-level 
localization accuracy in both static and dynamic indoor environments, while meeting the requirements 
for high real-time performance, strong stability, and fast convergence, thus providing a reliable pose 
estimation solution for indoor mobile robots. 
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Introduction 

In the field of autonomous mobile robotics, accurate and reliable real-time localization constitutes a 
fundamental component for executing path planning, environmental interaction, and task 
decision-making. Indoor environments present challenges such as structural complexity, dynamic 
obstacles, variable lighting conditions, and signal occlusion. These challenges impose significant 
limitations on the accuracy and reliability of localization methods reliant on a single information source. 
For instance, odometry suffers from cumulative errors; LiDAR is prone to failure in feature-sparse 
environments or scenes with glass walls; and visual methods are sensitive to changes in lighting and 
texture. Therefore, leveraging the complementary information from multiple sensors to enhance the 
overall performance of the localization system through fusion algorithms holds clear research necessity 
and engineering value. This study aims to construct a complete technical framework, encompassing 
data preprocessing, fusion models, to system implementation, to address the problem of high-precision, 
high-robustness real-time localization in indoor scenarios. This paper first models and preprocesses the 
characteristics of multi-sensor data. Subsequently, it designs a multi-source information fusion 
localization model capable of adapting to environmental changes. Finally, the integrated performance 
of this real-time localization system is implemented and validated on an embedded platform, providing 
an effective method to enhance the autonomy of indoor robots. 

1. Analysis and Preprocessing of Multi-Sensor Data Characteristics 

1.1 Sensor Selection and Characteristic Analysis for Indoor Localization 

The performance of an indoor robot localization system is closely related to the physical 
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characteristics and applicable boundaries of the sensors employed. Light Detection and Ranging 
(LiDAR) acquires high-precision, high-angular-resolution two-dimensional or three-dimensional 
environmental geometric contour information by emitting laser beams. Sufficiently high ranging 
accuracy can be achieved when the number of laser beams is adequate. However, LiDAR is highly 
prone to failure in the presence of transparent or strongly light-absorbing objects in the environment, 
and its data density attenuates with increasing distance. An Inertial Measurement Unit (IMU) provides 
high-frequency angular velocity and linear acceleration data of the body, possessing a completely 
autonomous capability for short-term motion estimation. Nevertheless, its measurement errors 
accumulate over time, leading to a significant drift issue[1]. Visual sensors (such as monocular, stereo, 
or RGB-D cameras) can capture rich environmental texture and feature information, making them 
suitable for feature-based localization and scene recognition. However, their performance is 
significantly affected by lighting variations, dynamic object interference, and texture absence. Wheel 
encoders estimate trajectory by recording wheel rotation angles, offering reliable short-term accuracy 
under non-slip planar motion models. However, their accuracy is directly constrained by factors such as 
wheel slippage, uneven ground, and mechanical wear. Therefore, it is necessary to quantitatively 
analyze the accuracy, frequency, error characteristics, and complementarity of each sensor in typical 
indoor environments. This analysis establishes the physical constraints and informational foundation at 
the sensor level for the subsequent fusion model. 

1.2 Spatiotemporal Synchronization Method for Heterogeneous Sensors 

The prerequisite for multi-sensor fusion is ensuring that all data streams exist within a unified and 
precise spatiotemporal reference frame. Temporal synchronization aims to address the timestamp 
inconsistency issues arising from each sensor's independent clock, as well as differing data acquisition 
and publication cycles. Hardware synchronization triggers all sensors to sample simultaneously by 
sharing an external clock pulse signal, which can achieve microsecond-level synchronization accuracy 
but imposes specific requirements on hardware interfaces. Software synchronization, on the other hand, 
performs timestamp alignment and interpolation processing on data streams from different sensors 
based on a master clock (typically the system clock or a high-precision sensor clock). Common 
methods include time alignment algorithms based on nearest-neighbor matching or linear interpolation. 
Spatial synchronization, also known as extrinsic calibration, requires precise determination of the rigid 
body transformation relationships (rotation matrix and translation vector) between each sensor relative 
to the robot's body coordinate system or a selected reference coordinate system. For LiDAR-camera 
combinations, a joint calibration method based on specific calibration board patterns can be employed. 
For calibrating the IMU with other sensors, it is necessary to estimate their relative attitude and 
installation position deviations through excitation motion. Spatiotemporal synchronization errors 
directly constitute systematic errors in the fusion system and must be accurately modeled and 
compensated[2]. 

1.3 Noise Models and Filtering Algorithms for Raw Data 

Raw sensor observation data is inevitably contaminated by various types of noise. Establishing 
accurate noise statistical models is crucial for effective data preprocessing and state estimation. Inertial 
sensor noise is typically modeled as a combination model containing Gaussian white noise and random 
walk bias. LiDAR ranging noise is often treated as additive Gaussian noise related to distance, while 
also considering outliers caused by specular reflection. Visual feature point observation noise is related 
to image pyramid levels and matching accuracy. In response to these noise characteristics, 
corresponding filtering algorithms must be employed for preprocessing. The Kalman filter and its 
variants (such as the Extended Kalman Filter, EKF) are suitable for linear or linearizable systems with 
Gaussian noise. For non-Gaussian situations or those with significant outliers, robust filtering methods 
(such as those based on M-estimators) or sliding window statistical methods are more effective. Particle 
filters demonstrate advantages in handling nonlinear and non-Gaussian problems, but incur higher 
computational costs. During the construction of an actual system, it is necessary to adapt the noise 
model based on the characteristic parameters of the selected sensors, determine parameter identification 
methods, and verify the suitability and efficiency of this model in suppressing specific noise and 
improving the signal-to-noise ratio. 

1.4 Sensor Data Quality Assessment and Anomaly Detection 

In dynamic and complex indoor environments, individual sensors may experience performance 



degradation or instantaneous failure due to external interference or internal malfunctions. Therefore, 
online assessment of the reliability of each sensor's data stream is crucial for the robustness of the 
fusion system. Data quality assessment can be based on internal consistency checks. For example, 
accelerometer and gyroscope data from an IMU should conform to physical constraints under static 
conditions. It can also be based on external consistency checks, such as comparing the short-term 
estimation results from one sensor with independent observations from another sensor. Common 
quantitative metrics include the Signal-to-Noise Ratio (SNR), data validity probability, and Chi-square 
tests on innovation sequences. Anomaly detection aims to identify and eliminate gross errors or invalid 
data in real-time. Methods range from simple rule-based threshold judgments (e.g., exceeding 
physically possible ranges) and hypothesis testing based on statistical models (e.g., Gaussian Mixture 
Models, GMM), to anomaly pattern recognition based on machine learning (e.g., Isolation Forest, 
autoencoders). Designing a lightweight, low-latency quality assessment and anomaly detection module, 
which can provide dynamic sensor confidence weights for subsequent fusion algorithms, is a necessary 
component for achieving highly reliable localization. 

2. Construction of a Multi-Source Information Fusion Localization Model 

2.1 State-Space-Based Fusion Localization Model Architecture 

The core of multi-sensor fusion localization lies in constructing a unified state-space model. This 
model collectively defines parameters such as the robot's pose, velocity, and systematic sensor biases as 
the system's state vector. The model typically adopts a theoretical framework based on Bayesian 
estimation, transforming the localization problem into the continuous estimation and update of the 
posterior probability density of the system state. The system state equation describes the robot's 
kinematic model, usually employing high-frequency IMU data as input for the prediction step to 
perform a prior estimation of the state vector. The observation equation, on the other hand, establishes 
the nonlinear geometric and physical relationships between the system state and various sensor 
measurements (such as LiDAR point cloud matching residuals, visual feature reprojection errors, and 
encoder odometry increments). By incorporating the observation information from heterogeneous 
sensors as constraints into a unified optimization objective function or recursive filtering framework, 
deep information fusion is achieved[3]. This architecture must clearly define the composition of the state 
vector, the mathematical formulation of the motion and observation models, and analyze the 
contributions of different sensor observations to the observability of different components of the state 
vector, thereby providing a rigorous theoretical foundation for subsequent fusion algorithms. 

2.2 Online Estimation Algorithm for Adaptive Weighting Factors 

During the fusion process, the instantaneous accuracy and reliability of different sensors vary 
dynamically under different environmental conditions. A fusion strategy with fixed weights struggles to 
adapt to such variations, potentially leading to decreased localization accuracy or even divergence. The 
objective of the online estimation algorithm for adaptive weighting factors is to dynamically adjust 
each sensor's contribution to the fusion objective function or filter update based on the real-time quality 
of its data. A typical method is based on the covariance matching principle of innovation sequences. 
This method estimates and adjusts the observation noise covariance matrix of a sensor online by 
comparing the consistency between the actual observation residuals and the theoretically predicted 
covariance, thereby indirectly altering its weight. Another approach involves directly constructing a 
weighting function related to data quality assessment metrics (such as the number of feature matches, 
point cloud matching scores, or IMU static detection variance), transforming qualitative assessments 
into quantitative weighting coefficients. This algorithm must meet real-time requirements and ensure 
the smoothness of weight updates to avoid oscillations in state estimation. Its essence is to implement a 
closed-loop feedback control that is aware of sensor reliability. 

2.3 Multi-Scale Feature Fusion and Pose Estimation Method 

To fully leverage the complementary environmental information provided by different sensors, a 
multi-scale feature fusion mechanism needs to be designed. On the geometric scale, LiDAR provides 
accurate local surface elements and edge features, while visual sensors offer rich texture corners and 
line segment features. Associating and fusing these heterogeneous features in space enables the 
construction of a more discriminative environmental representation. On the temporal scale, the fusion 



algorithm must handle high-frequency IMU predictions, medium-frequency visual odometry updates, 
and potentially low-frequency global matching corrections (such as loop closure detection based on 
point clouds or visual features). The pose estimation method typically employs a graph 
optimization-based framework. This framework treats state variables at different times as nodes and 
uses constraints such as IMU pre-integration, relative pose observations, and absolute pose 
observations as edges to construct a sparse pose graph. By solving for the maximum a posteriori 
probability estimate of this graph, a globally consistent trajectory is obtained. This method effectively 
fuses multi-scale, multi-frequency observation information and naturally supports loop closure 
detection to eliminate accumulated errors. 

2.4 Design of Robustness and Fault Tolerance Mechanisms for the Fusion System 

When confronted with situations where sensor observations become entirely unreliable due to 
temporary sensor failure, severe interference, or extreme environments, the fusion system must possess 
inherent robustness and fault tolerance capabilities. The mechanism design must be implemented across 
multiple levels. At the data level, based on anomaly detection results, a gating strategy can be designed 
to temporarily isolate sensor data streams identified as faulty, preventing them from contaminating the 
state estimate. At the model level, employing robust kernel functions (such as the Huber kernel or 
Cauchy kernel) to replace the quadratic cost function in least squares can mitigate the impact of outlier 
observations on the overall optimization objective. At the state estimation level, maintaining multiple 
parallel hypotheses or adopting multiple-model adaptive estimation methods can address sudden 
changes in environmental features (e.g., entering a completely new scene through a door). System-level 
design must incorporate state health monitoring and recovery strategies. For instance, when visual 
information is lost for an extended period, the system should be able to automatically degrade to a 
fusion mode primarily reliant on LiDAR and IMU, and perform re-localization to reintegrate into the 
global coordinate system once vision is restored. This hierarchical fault-tolerant design ensures the 
continuous availability and stability of the localization system under non-ideal conditions[4]. 

3. Implementation and Performance Validation of the Real-Time Localization System 

3.1 Design of the Embedded Fusion Localization System Architecture 

To achieve real-time autonomous localization for indoor robots, the aforementioned fusion 
algorithms must be deployed on the robot's embedded computing platform. This hardware architecture 
typically comprises a sensor interface layer, a core processing unit, and an output layer. The sensor 
interface layer is responsible for reliably receiving raw data streams from LiDAR, IMU, visual sensors, 
and encoders via specific communication protocols (such as UART, SPI, CAN, or Ethernet) and 
performing initial hardware timestamp labeling. The selection of the core processing unit requires 
balancing computational power, power consumption, and real-time requirements. A common solution is 
a heterogeneous computing platform, for instance, utilizing an ARM CPU to execute sensor drivers, 
data synchronization, and task scheduling, while employing an FPGA or GPU to accelerate 
computation-intensive tasks such as point cloud processing and image feature extraction. The software 
architecture adopts a modular design, decoupling functions like data acquisition, preprocessing, fusion 
computation, and state publishing into independent threads or processes, which exchange data with low 
latency via shared memory or message middleware. The system output layer publishes high-precision 
robot pose estimation results at a fixed frequency and concurrently provides system health status and 
covariance information for use by upper-layer navigation and decision-making modules. 

3.2 Computational Optimization and Resource Scheduling for Real-Time Localization 

Meeting stringent real-time constraints is the core challenge for embedded deployment, 
necessitating multi-level optimization of the fusion localization algorithm. At the algorithm level, 
incremental and sliding window optimization strategies are adopted to avoid computational delays 
caused by global batch optimization. Sparsity analysis and fixed-pattern precomputation are performed 
on Jacobian matrices in nonlinear optimization to reduce online computation load. Parts of the 
computation (such as specific matrix inversions) are converted into lookup table operations. At the 
code level, techniques like compiler optimization directives, loop unrolling, and memory alignment are 
employed to enhance execution efficiency. At the computational resource scheduling level, a 
deterministic task scheduling strategy must be designed. Based on the computation time and data 



dependencies of each module, CPU core resources are allocated reasonably to ensure that high-priority 
fusion update threads are not blocked. Tasks with longer execution times, such as global loop closure 
detection, are set as low-priority background threads for asynchronous execution to avoid interfering 
with the periodicity of the main localization thread. Through systematic optimization and scheduling, 
the full pipeline latency from sensor data input to pose result output is ensured to remain stable at the 
millisecond level. 

3.3 Localization Accuracy Testing in Static and Dynamic Environments 

The performance of the localization system requires quantitative evaluation through meticulously 
designed experiments. The experimental environment must cover typical indoor scenarios, including 
long corridors, open halls, structurally repetitive areas, and regions with variable lighting. Static 
environment testing aims to evaluate the system's absolute accuracy and repeatability precision. Using 
a high-precision optical motion capture system or a total station as the ground truth reference, the robot 
is positioned stationary at multiple known calibration points. The localization system's outputs are 
recorded and subjected to error statistics. Dynamic environment testing evaluates the localization 
accuracy and smoothness of the system during motion. The robot is controlled to follow a preset closed 
trajectory (e.g., a rectangle or a figure-eight). Using the trajectory recorded by the motion capture 
system as the ground truth, the accumulation of positional and attitude errors over time is calculated, 
with particular attention paid to the drift error at the point of trajectory closure[5]. Furthermore, dynamic 
interference must be introduced, such as adding moving pedestrians or objects within the robot's field 
of view, to test the system's robustness in dynamic scenes. Evaluation metrics include absolute position 
error, relative pose error, root mean square error, and the statistical distribution of errors. 

3.4 Analysis of System Real-Time Performance, Stability, and Convergence 

Beyond localization accuracy, the real-time performance, stability, and convergence of the system 
as a whole are critical for evaluating its engineering usability. Real-time performance analysis verifies 
whether the system meets the requirements of control and planning modules by measuring and 
statistically analyzing the period jitter of the system's localization output, the end-to-end latency from 
data acquisition to output, and the latency variation under high-load scenarios (such as dense point 
clouds or multiple visual features). Stability analysis focuses on the system's performance during 
long-duration operation. It involves conducting continuous operation tests for several hours or more, 
monitoring changes in internal state variables such as pose estimation covariance, optimization 
residuals, and sensor weights, to confirm the absence of a divergent trend characterized by slowly 
accumulating errors or unbounded growth in estimation variance[6]. Convergence testing examines the 
system's re-localization capability when the initial position is uncertain or tracking is lost. Given a 
relatively large initial pose deviation, this test observes the time and travel distance required for the 
system to converge to the correct pose and analyzes whether the convergence process is smooth and 
free of oscillation. These three aspects of quantitative analysis together constitute a comprehensive 
evaluation of the performance of the real-time fusion localization system. 

Conclusion 

This study addresses the demand for real-time, precise localization in indoor robots by proposing 
and implementing a complete localization method based on multi-sensor fusion. Through in-depth 
analysis of the data characteristics from LiDAR, visual sensors, IMUs, and encoders, a preprocessing 
pipeline encompassing spatiotemporal synchronization, noise filtering, and quality assessment was 
established, providing high-quality, consistent data input for fusion. The constructed state-space-based 
adaptive fusion localization model can dynamically adjust fusion weights according to the real-time 
reliability of sensors. Furthermore, by leveraging multi-scale feature fusion and a robust optimization 
framework, the accuracy and environmental adaptability of pose estimation were effectively enhanced. 
Implementation and optimization within an embedded system ensured the algorithm meets strict 
real-time constraints. Comprehensive system test results demonstrate that the proposed method 
achieves the expected localization accuracy across various indoor scenarios while exhibiting 
commendable stability and convergence. Future work may focus on exploring more lightweight deep 
learning-based feature extraction and fusion networks to further improve the system's adaptability in 
extreme environments, investigating collaborative localization among multiple robots to extend the 
system's application scope, and optimizing the algorithm to be compatible with lower-cost sensor 



configurations, thereby promoting the widespread deployment of this technology in practical 
applications. 
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